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ABSTRACT7

8 We have recently argued that a simple nonlinear law could possibly be im-

portant for the origin of the Universe resulting in fractal or multifractal features.

Various fractal scaling models of the large-scale mass distribution have already

been proposed. The expected universal multifractal function for galaxies is sim-

ilar to that identified by NASA’s Voyager mission in the Solar System. Hence

we now apply the similar method for determination of the reliable multifractal

spectrum of distribution of galaxies on cosmological scales, based on selected

observations from a million of galaxies in the Redshift Catalog updated in June

2008. We show that the observed spectrum is consistent with the weighted one- or

two-scale Cantor set models characteristic for turbulence in laboratory and inside

the Sun’s heliosphere immersed in the very local interstellar medium. However,

the total degree of multifractality ∆ ≈ 0.2 is smaller than that inside the helio-

sphere. This would be characteristic for a simple linear fractal scaling of galaxy

distribution, but somewhat varying for nearby (∆ ' 0.1) and the most remote

galaxies (∆ ' 0.2) receding from our Solar System. The parameters p ≈ 0.45 and

λ ≤ 1
2

for one-scale model are apparently related to some voids in the large-scale

distribution of matter. A possible asymmetry (A ∼ 3/4) of the total spectrum

for the two-scale weighted Cantor set (A 6= 1) could admittedly be attributed

to some deviations from the Hubble’s law for the ideal uniform expansion of the

Universe.

Subject headings: scaling: multifractals – universe – galaxies: clustering – mass9

distribution10
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1. Introduction11

In the eighteen century Immanuel Kant suggested that some nebulae might be distant12

systems of stars, but the first galaxy beyond the Milky Way Galaxy was discovered only in13

1924. In fact, by the early twentieth century, based on observations using 2.5-meter and14

5-meter telescopes on Mount Wilson and Palmer Mountain, respectively, Edwin Hubble has15

established the view the expanding Universe with galaxies receding from the Solar System,16

with velocities roughly proportional to their celestial distances. At present, after the past17

one hundred years, one can estimate that even a trillion of galaxies, (0.2 − 2) × 1012, may18

exist in the entire Universe. Because of, e.g., the problem of dark matter raised nearly half19

a century ago, not all the galaxies can admittedly be observed directly, but some fractions20

of them are now classified and well catalogued. Anyway, this allows us to study in more21

detail the large-scale structure of the distribution of galaxies in the Universe.22

It is well known that the Euclidean three-dimensional space filled-up with a constant23

density of mass distribution would have produced the infinite Newtonian gravitational24

forces. Admittedly, despite the discovery of large massive inhomogeneous structures with25

large spatial empty voids, which are common features of astrophysical observations, the26

standard cosmological model based on the theory of general relativity also employs a27

somewhat similar approximation claiming that the Universe is homogeneous, at least on28

some very large scales. On the other hand, the available data satisfy power law distributions29

of mass with various exponents that are substantially lower than three, ranging from a value30

greater than 1 to about 2 (Mandelbrot 1982, chapter III). This would correspond to special31

values of various fractal dimensions (Macek 2020, ch. 3.3), (Macek 2022, ch. 4). The fractal32

view of galaxy clusters is supported by luminous radiation data and is consistent with a flat33

Universe in thermodynamic equilibrium; in addition, this certainly satisfies the Copernican34

principle.35
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Some simple monofractal distributions of galaxies have been reported in the36

astrophysical literature (e.g., Maddox 1987; Teles et al. 2022), but it seems that the37

clustering structures with number N(l) at distance l are better explained by the multifractal38

spectrum of dimensions f(α) with N(l) ∝ l−f(α) (e.g., Jones et al. 1988; Gaite 2021).39

The richness of various fractal scaling behavior has been exploited by Jones et al. (2005).40

Interestingly, the universal multifractal function for galaxies is similar to that identified41

by NASA’s Voyager missions at the heliospheric boundaries (see Macek et al. 2014) (as42

more recently analyzed even on very small kinetic scales in the Solar System’s plasmas43

(e.g., Macek et al. 2018, 2023; Wójcik & Macek 2024)). Therefore, we apply the similar44

fractal numerical methods here for direct determination of the multifractal spectrum of45

distribution of galaxies on cosmological scales, using the best currently available catalog.46

We show that the observed multifractal spectrum is basically consistent with a one-scale47

Cantor model characteristic for turbulence in space and laboratory.48

2. Catalog of Galactic Data49

We have used in our analysis the data of redshifts obtained from the Smithsonian50

Astronomical Observatory Telescope Data Center available from http://tdc-www.51

harvard.edu/zcat/velocity.dat. Instead of the older CfA catalog with only 35952

objects and the apparent magnitudes m ≤ 14.5, as analyzed by Martinez et al.53

(1990), we have now looked at the Updated (June 2008) CfA Redshift Catalog UZCAT54

(ZCAT ) compilation of a million (from a trillion) of various observed galaxies, see55

http://tdc-www.harvard.edu/zcat/zcom.htm. This catalog originally consisted of56

various sets of galaxies (e.g., NZ40, SDSS, 2dF, 6dF, and ZCAT), and later other published57

observed data on some galaxies has been added by the catalogue authors (e.g., Shectman58

et al. 1996; Skrutskie et al. 2006; Jones et al. 2009). But we have not used velocities with59

http://tdc-www.harvard.edu/zcat/velocity.dat
http://tdc-www.harvard.edu/zcat/velocity.dat
http://tdc-www.harvard.edu/zcat/velocity.dat
http://tdc-www.harvard.edu/zcat/zcom.htm
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negative source designations (19, 517 observations), which are in private domain (and hence60

cannot be used without the owner’s consent).61

After all, the data assembled by various authors for studying the large-scale structure62

of the Universe are basically complete in redshift information, but not necessarily in some63

other terms like diameter, magnitude and references. However, the velocities listed are the64

best available with respect to the quoted measurement errors and the reliability of the65

source. Surely, the purpose of this catalog is to be a complete list of galaxies with radial66

velocities for mapping and statistical studies. Incidentally, following remark that users67

should remove objects of type > 20, which were misclassified as galaxies, before using this68

galaxy catalog, 14, 177 observations of VH have been omitted. The most frequent type was69

25 – a plate flaw, stars, and other misclassifications.70

We have used here the radial velocities VH(r) < c, with light speed c = 299 792 458

m s−1, for a relativistic redshift z =
√

1+VH/c
1−VH/c

− 1 (see, e.g. Antonyuk 2020), which in a

nonrelativistic limit of VH � c is z ≈ VH/c, can somewhat be corrected for the motion

of the Sun, with the apex velocity of ∼230 km s−1, right ascension (RA) 18 h 28 m and

declination (Dec.) +30 deg (North in galactic coordinates). Therefore, we have (cf. Davis &

Lineweaver 2004)

VH =

 c z for VH � c,

c (1+z)2−1
(1+z)2+1

otherwise.
(1)

and the heliocentric distance to any galaxy is given by LH := c
H0

ln(1 + z) = c
2H0

ln 1+VH/c
1−VH/c

,71

and for z � 1 is LH ≈ cz
H0

, or LH ≈ VH/H0, assuming a Hubble parameter (present epoch)72

H0 = 70 km s−1 Mpc −1.73

Strictly speaking, we have gotten rid of negative (blushifted) redshifts z, eliminated74

data gaps (∼ 50, 000 blank velocities), and removed outliers using the IQR method, which75

is useful for skewed data (in contrast to usual Z-score method), i.e., IQR = Q3 −Q1, where76
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Q1,3 are the first and third quartiles correspondingly, and then the outliers are defined as77

observations falling below Q1 − 1.5 IQR, or above Q1 + 1.5 IQR. Thus, we have analyzed78

the sample of 783, 152 observations down to magnitude m . 29.5 (as limited by the Hubble79

Space Telescope) and very high relativistic velocities. After all, one can confirm that for the80

currently estimated diameter of the Universe of about 2Rmax ≈ 28.5 Gpc, the maximum81

receding velocity in most remote galaxies in the last category denoted by violet should be82

Vmax = c tanh(2RmaxH0/c) = 293, 018 km s−1 (with VH/c = 0.98 and a very large redshift83

zmax ≈ 8.35).84

Fig. 1.— The sky map of different categories of galaxies: red, blue, magenta, cyan, green,

orange, and violet depending of the redshifted velocity as used in the UZCAT updated (2008)

catalogues.

The plot map on the sky of all the analyzed galaxies of UZCAT (Aitoff projection)85

is illustrated in Figure 1, for the following various categories of nearby and more and86
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more distant remote galaxies: red, blue, magenta, cyan, green, orange, and violet. To87

construct the map, we have used here right ascension and declination in the Galactic88

(J2000) coordinate system (centered at 0◦ increasing to the left). In particular, the green89

and orange groups represent the well studied regions of the 2dF GRS (initially 100,000,90

up to 380,000 datapoints) http://www.2dfgrs.net. The other SDSS DR3 Survey91

https://classic.sdss.org/dr3/ consists of ∼ 350, 000 galaxies and then we also have92

the LCRS and the Century surveys, as extensively studied by John Huchra and Zwicky.93

The clusters rely on published finding charts, and these clusters are standardized by ID’s94

using Dressler’s (1980) numbers.95

Apparently, the observable universe, with possible hundreds billion large galaxies, is not96

a chaotic scatter. The galaxies form intricate filaments and other large structures, shaping97

a web-like pattern that defines the large-scale structure of the cosmos. This pattern reflects98

the behavior of dark matter and provides insights into the Universe’s overall structure and99

evolution. Obviously, differences in population of each category of galaxies could result in100

specific somewhat different fractal and multifractal characteristics, Table 1.101

In Figure 2 box plot of various populations for the following categories of the galaxies102

under study: red, blue, magenta, cyan, green, orange, and violet are displayed depending of103

the receding speed together with the empirical probability density functions (PDFs), which104

have been computed by using kernel density estimates (KDE). All the KDE plots show105

generally low densities across different ranges. They exhibit minor but no dominant peaks,106

indicating a multimodal distribution with several small clusters. The data points appear to107

be spread out evenly across the ranges, with no significant concentration. The skewness is108

well pronounced in the contrasting cases.109

http://www.2dfgrs.net
https://classic.sdss.org/dr3/
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Fig. 2.— The box plot of distribution and probability density functions (PDFs) of different

colored categories of galaxies red, blue, magenta, cyan, green, orange, and violet depending

of the receding speed of the UZCAT updated (2008) catalog with populations displayed in

Table 1.
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3. Multifractal Analysis110

The basic concepts of fractal sets are elucidated in textbooks (e.g., Falconer 1990; Ott111

1993; Macek 2020). We only note here that fractals are characterized by self-similarity,112

which is described by a single fractal dimension (independent of scale l). On the other hand,113

a multifractal is a more complex object that exhibits different self-similarities (dependent114

on scale), which is described by the spectrum of dimensions or a multifractal singularity115

spectrum.116

3.1. Multifractal Characteristics117

A comparison of the main characteristics of fractals (with a usual measure of the118

volume of a set) and multifractals (with a probability measure to visit a fraction of the set)119

has been thoroughly discussed by Macek et al. (2014) in Sec. 2.1.120

As is known, contrary to a usual monofractal scaling, basically two universal functions

are characteristic for multifractals. Namely, for a set consisting of N elements with

probability measures pi(l) associated with a given scale l, the generalized dimension is

Dq =
1

q − 1
lim
l→0

ln
∑N

i=1(pi)
q

ln l
(2)

while the multifractal singularity spectrum f(α) as function of a singularity strength α

(pi(l) ∝ lαi) is defined by

f(α) = lim
ε→0

lim
l→0

ln[Nl(α + ε)−Nl(α− ε)]
ln 1/l

(3)

In general, the generalized dimensions Dq are nonlinear functions of any given real index121

q, and provide important information about multifractality of the system (Ott 1993).122

Equivalently, the universal singularity spectrum f(α), with the maximum value f(α0) = D0,123

characterize multifractality of the system under study (Falconer 1990). The line joining124
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the origin to the point f(D1) = D1 = liml→0

∑N
i=1[pi(l) log(pi(l)]/log(l) is tangent to the125

shape of the spectrum. These functions illustrated in Figure 3.7 of Macek (2020), as126

thoroughly discussed by Macek et al. (2011) and Macek et al. (2012), allow a comparison127

of the experimental results with the phenomenological models of turbulence (Frisch 1995;128

Biskamp 2003).129

In addition to a usual probability measure pi(l), we can also use the following

higher-order pseudoprobability measures associated with each scale l:

µi(q, l) ≡
pqi (l)∑N
i=1 p

q
i (l)

. (4)

In this way, (using a fractal dimension index fi(q, l) ≡ log µi(q, l)/ log l), one can directly

calculate the multifractal spectrum as the average of the pseudoprobability measure µi(q, l)

according to Equation (4) indicated by the squared brackets 〈· · · 〉 (Chhabra & Jensen 1989)

f(q) ≡ lim
l→0

N∑
i=1

µi(q, l) fi(q, l) = lim
l→0

〈log µi(q, l)〉
log(l)

. (5)

The average value of the singularity strength is given by Chhabra et al. (1989)

α(q) ≡ lim
l→0

N∑
i=1

µi(q, l) αi(l) = lim
l→0

〈log pi(l)〉
log(l)

. (6)

4. Multifractal Model130

Macek & Strumik (2014) and Macek (2022) have argued that simple nonlinear or fractal

models provides a useful tool for phenomenological analysis of complex turbulent media.

For example, the generalized weighted Cantor set is a simple example of multifractals,

as explained, e.g., by Falconer (1990). This model is illustrated in Figure 2 of Macek

(2007). When constructing this model with scale parameter λ ≤ 1/2 we have the analytical

expressions for Dq and f(α) (e.g. Macek & Wawrzaszek 2009). Namely, if measures p
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and 1 − p are applied to the left and right remaining parts of a unit interval the function

τ(q) ≡ (q − 1)Dq is equal to (Macek et al. 2012, Equation 11)

τ(q) =
ln[pq + (1− p)q]

lnλ
(7)

and for α(q) = τ ′(q) we have the following formula:

α(q) =
1

lnλ

pq ln p+ (1− p)q ln(1− p)
pq + (1− p)q

. (8)

Then, using the Legendre transformation, we obtain the explicit formula for the multifractal131

spectrum f(α(q)) = qα(q)− τ(q).132

However, for a more developed generalized two-scale weighted Cantor set we must

specify two scales l1 and l2 (l1 6= l2), satisfying l1 + l2 ≤ 1. In this case, one needs to solve

for τ(q) the transcendental equation (e.g., Ott 1993),

pq1

l
τ(q)
1

+
pq2

l
τ(q)
2

= 1, (9)

which is only somewhat more general than the analytical solution given by Equation (7).133

Finally, it is worth to mention that the standard middle-thirds monofractal Cantor set134

model is recovered only for λ = 1/3 and p = 1/2, with D0 = ln 2/ ln 3.135

The difference between the calculated maximum and minimum dimensions, related to

the respective regions in the phase space with the least and most dense probability densities

has been proposed by Macek (2007) and Macek & Wawrzaszek (2009)

∆ ≡ αmax − αmin = D−∞ −D∞ =

∣∣∣∣ log(1− p)
log l2

− log(p)

log l1

∣∣∣∣ (10)

as a degree of multifractality. Naturally, this parameter ∆ exhibits a deviation from a strict

self-similarity, and it can also be used as a degree of intermittency as explained in (Frisch

1995, ch. 8). The next quantitative parameter, describing the multifractal scaling, is the

measure of asymmetry of the spectrum defined by Macek & Wawrzaszek (2009)

A ≡ α0 − αmin

αmax − α0

, (11)
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where α = α0 is the point at which the spectrum has its maximum, f(α0) = D0. The136

case when A = 1 (l1 = l2 = 1/2) corresponds to the one-scale p-model (e.g., Meneveau &137

Sreenivasan 1987).138

Now, following Burlaga (1995) the probability measures p(l) depending on scale

l := LH , as discussed in Sec. 2, can be constructed using observed distribution of galaxies.

Namely, first normalizing a series of the average number of the observed objects n(li)

in i-th shell of radius li, where i = 1, . . . , N = 2m (e.g., taking m = 17) for j = 2m−k,

k = 0, 1, . . . ,m

p(xj, l) ≡
1

N

j∆l∑
i=1+(j−1)∆l

n(li) = pj(l), (12)

is calculated with the successive average values 〈n(li + ∆l)〉 of n(li) between li and li + ∆l,139

for each ∆l = 2k with the total N number of galaxies in the system (cf. Macek et al. 2011).140

One can show that in the inertial range of scales the average value of the qth moment

of p at various scales l should scale as (Burlaga 1995)

〈pq(l)〉 ∼ lγ(q), (13)

where the exponent γ is related to the generalized dimension, γ(q) = (q − 1)(Dq − 1).141

Following this method, using these slopes for each real q, the values of Dq can be determined,142

Equation (13). Alternatively, as explained in Section 3, the multifractal function f(α)143

versus scaling index α, which exhibits universality of the multifractal scaling behavior, can144

be obtained using the Legendre transformation. It is worth noting, however, that we obtain145

this multifractal universal function directly from the slopes given in Equations (5) and (6),146

using this direct method in various situations (see, Macek & Wawrzaszek 2009; Macek et al.147

2011, 2012, 2014).148
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5. Results149

Admittedly, with the CfA limited observations, one can only determine the points near150

the maximum of f(α) (cf. Martinez et al. 1990). One can possibly extrapolate these points151

near the intercepts at the maximum, f(α0) = D0. On the other hand, in our study based152

on much more copious UZCAT data one can find more reliable multifractal spectrum of the153

distribution of galaxies in the Universe.154

Therefore, we consider astronomical surveys at different right ascension (RA) and155

declination (Dec) values, as seen in Figures 1 and 2. But, first instead of plotting156

observations by the exact positions on the celestial sphere (which would not be exactly157

insightful), we show how a given property changes on a plot by RA. We have used this158

variable as a proxy for time in a series of heliocentric velocities for individual galaxies159

involves treating the 0− 24 h range of RA (similarly to a 24-hour time period), but now in160

the J2000 galactic frame of reference. This plot created using a right ascension (celestial161

equivalent of longitude) variable is commonly constructed in context of observational162

astronomy, when tracking the position of celestial objects over time. Obviously, this163

leverages the regular rotation of the Earth to map RA values to observational time,164

assuming observations are evenly distributed.165

In this way, Figure 3 displays differences of successive 2n-step averages of large-scale166

fluctuations in the receding redshifted speeds ∆2nVH (in km s−1) for n = 5, . . . , 12, compare167

(Burlaga 1995, Fig. 9.7). One can identify patterns or trends, which may correspond to168

certain celestial regions or astronomical phenomena. Moreover, any deviations from the169

ideal linear Hubble’s law can provide insights into large-scale structures, peculiar motions,170

and evolutionary effects. In particular, we see some irregular bursty, spiky, inhomogeneous171

(aperiodic, and asymmetric) features (of varying widths) that are characteristic for172

multifractal fluctuations for intermittent turbulence. In most cases the magnitudes of173



– 14 –

0

5 × 104

1 × 105

1.5 × 105

2 × 105

V h

−5 × 104

0

5 × 104

∆
32

V h

−5 × 104

0

5 × 104

1 × 105

∆
64

V h

−5 × 104

0

5 × 104

∆
12

8
V h

−4 × 104

−2 × 104

0

2 × 104

4 × 104

∆
25

6
V h

−4 × 104

−2 × 104

0

2 × 104

4 × 104

∆
51

2
V h

−3 × 104
−2 × 104
−1 × 104

0
1 × 104
2 × 104
3 × 104

∆
10

24
V h

−2 × 104

−1 × 104

0

1 × 104

2 × 104

∆
20

48
V h

Jan 01 00:00 Jan 01 06:00 Jan 01 12:00 Jan 01 18:00 Jan 01 23:59

−2 × 104
−1 × 104

0
1 × 104
2 × 104
3 × 104

∆
40

96
V h

Fig. 3.— The differences of successive 2n-step averages ∆2nVH [km s−1] of large-scale speed

fluctuations for n = 5, . . . , 12 using observed distribution of galaxies based on the selected

UZCAT data.



– 15 –

positive fluctuations are somewhat greater than those for the negative fluctuations. Because174

time series for larger scales are magnified parts of the time series for the velocity increments175

on smaller scales, it seems that the cosmological fluctuations are self-affine on different176

scales. Hence we can proceed with the multifractal analysis for various q values and scales177

l. The probability measures p(l) depending on scale l := LH of Sec. 2 (normalized) is now178

constructed according to Equation (12) for each category as obtained using the UZCAT179

galaxy catalog data in Figure 1.180

Second, in Figures 4 and 5 both average logarithmic probability and pseudoprobability181

measures 〈log10 pi(l)〉 and 〈log10 µi(q, l)〉 versus log10 l for the all colored categories in the182

UZCAT catalog are now presented for the following (positive and negative) values of q: 6,183

5, 4, 3, 2, 1, 0, -1, -2, -3, -4. (Values of q featuring fittings with R2 < 0.975 and r < 0.975184

have been rejected, where r denotes the Pearson correlation coefficient). As we see, the185

calculated slopes can be fitted to straight lines in the range of scales typically of to 4 even186

up 5 orders of magnitude. Hence, similarly as for the heliospheric plasma cf. (Macek &187

Wawrzaszek 2009; Macek et al. 2012, 2014), we can obtain the multifractal spectrum using188

UZCAT data and compared the observational points with the weighed one-scale or the189

two-scale Cantor set models as discussed in Section 4.190

The generalized dimensions Dq as a function of q and the universal singularity191

spectrum f(α) as functions of singularity strength α are finally displayed in Figure 6 and 7,192

respectively. The values of Dq and f(α), as given in Equations (5) and (6), are calculated193

using the UZCAT data (denoted by boxes) and compared with both Cantor set models (cf.194

Macek 2007, Figure 3). In particular, we have f(α0) := D0 = 1.0 and D1 . 1.0. We see that195

the catalogued observations are reasonably well consistent with the p-model or one-scale196

Cantor set symmetric spectrum (continuous lines), fitted to the theoretical solutions of197

Equations (7), especially for q > 0 (left part of the spectrum) and still somewhat less clearly198
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for −4 ≤ q ≤ 6. These results are obtained using the UZCAT catalog.
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log10 l for −4 ≤ q ≤ 6. These results are obtained using the UZCAT catalog.
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categories of data in the UZCAT catalog compared with the one-scale (continuous lines) or

the two-scale (dashed lines) weighted Cantor models.
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Fig. 7.— The obtained multifractal measures od the multifractal spectrum f(α) as function

of the singularity strength α (boxes) for the various observation data of the UZCAT catalog

compared with the one-scale (continuous lines) or the two-scale (dashed lines) weighted

Cantor models.



– 20 –

for q < 0 (right side).199

Naturally, a somewhat even better agreement is seen with the asymmetric two-scale200

(dashed lines) Cantor set model, with the corresponding parameter p (or p1 = p, and201

p2 = 1− p1) including l1 and l2 of the theoretical model given by Equation (9). Hence the202

empirical values are in a good agreement with the theoretical model (Macek 2020, Fig. 3.7).203

To select correctly, all these model parameters (p1, p2, l1, l2), we have used the Huber’s204

loss metrix (1964) to find the best possible fits. The method combines the MSE and MAE205

metrics, giving a better loss function that is less sensitive to outliers, e.g., due to irregular206

intervals in the time series. Further, for the two-scale Cantor model (as well as for the207

one-scale model), we have p1 + p2 = 1 (see also Figure 3.9 of Ref. (Macek 2020)), so the208

fragmentation with probability p1 among the fragment of length l1 is virtually the same as209

with p2 under l2.210

However, the total degree of multifractality ∆ ≈ 0.2 is substantially smaller then that211

inside the heliosphere ∆ = 0.3 − 0.7, but larger than that in nonmultifractal (∆ ≈ 0)212

case of the very local interstellar medium (VLISM) after the crossing of the heliopause (at213

∼ 122 AU) by Voyager 1 in 2012 (Macek et al. 2014). This would rather indicate toward214

a simple linear fractal scaling of distribution for all the galaxies. Anyway, the parameters215

p ≈ 0.45 and λ ≤ 1
2

for one-scale model are apparently related to some voids in the216

large-scale distribution of matter. In particular, the calculated slightly asymmetric spectra217

with A = 0.5− 1.4 for two-scale weighted Cantor set model (A 6= 1) could be related to the218

deviation from Hubble’s law for the uniformly expanding Universe.219

Therefore, we have also calculated the multifractal parameter ∆ and asymmetry A220

of Equations (10) and (11) in the observed Universe depending on the distances for all221

the categories: red, blue, magenta, cyan, green, orange, and violet, which are provided222

in Table 1. The obtained differences listed in Table 1 are somewhat varying (from 0.1223
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Table 1: Values of Parameters Describing Multifractality ∆ and Asymmetry A of the Spectra

for the Redshifts from the UZCAT Catalog for Variously Populated Categories of Distances

to Remote Galaxies (in 103 km s−1).

Galactic Velocity Population Multifractality Asymmetry

Category max ∆ A

Red 5 21,556 0.0862 0.8817

Blue 12 77,026 0.0822 0.9677

Magenta 20 115,233 0.1225 0.4774

Cyan 25 85,905 0.0855 1.1093

Green 40 203,561 0.0873 0.7793

Orange 80 192,982 0.1087 1.4238

Violet < 300 86,820 0.2133 0.7711

Total 783,152 0.2045 0.7493



– 22 –

to 0.2) for nearby (∆ ' 0.1) and the most remote galaxies (∆ ' 0.2) receding from our224

Solar System. This should be attributed to variation in the population of receding galaxies225

in various categories according to their distances. The parameters p ≈ 0.45 and λ ≤ 1
2

226

for one-scale model are apparently related to some voids in the large-scale distribution of227

matter. A possible asymmetry (A = 0.75) of the total spectrum for the two-scale weighted228

Cantor set (A 6= 1) could admittedly be attributed to some deviations from the Hubble’s229

law for the ideal uniform expansion of the Universe.230

6. Conclusions231

In summary, in this Letter, based on a sample consisting of various categories of about232

800, 000 galaxies taken from the UZCAT catalog, as highlighted by colors in Figure 1,233

for the large-scale distributions of all galaxies existing in the Universe, we have studied234

intermittent self-affine multifractal fluctuations in the averages heliocentric (relativistic235

redshifted) velocities, as presented in Figure 3.236

Basically, using the calculated slopes depicted in Figure 4 and the one-scale or two-scale237

weighted Cantor set models, we have finally obtained the generalized dimensions and the238

universal multifractal spectrum shown in Figures 6 and 7. The model parameters p . 1
2

and239

λ ≤ 1
2

of Equation (7) are apparently related to some voids in the large-scale distribution of240

matter in the Universe. In this way, we have provided a new supporting important evidence241

that the large-scale galaxy distribution most probably has multifractal structure consistent242

with the weighted one-scale Cantor set model.243

Because of the differences in population of various classes of galaxies, the degree of244

multifractality ∆ of the spectrum somewhat varies between 0.1 and 0.2 for the more and245

more remote receding distances, as listed Table 1, a possible asymmetry A ∼ 3
4

of the total246
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spectrum may be caused by the deviations from the ideal Hubble’s law. However, the247

degree of multifractality is rather small, ∆ . 0.2, as obtained for admittedly a tiny fraction248

of all possibly existing galaxies. Hence one is still not able to give any definitive answer249

weather the galaxies in the entire Universe should actually exhibit multifractal or even a250

simple fractal distribution, as has already been suggested by Mandelbrot (1982).251
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