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Abstract Turbulence in space plasmas remains a fundamental challenge, and Earth's magnetosphere (MSP)
offers a natural laboratory for its study. Using high-resolution magnetic field data from the Magnetospheric
Multiscale (MMS) mission, we extend a stochastic Markovian framework to analyze turbulence across 10
diverse magnetospheric regions, including key reconnection sites. We show that magnetic field fluctuations are
well described as Markov processes in scale across the kinetic domain. Multi-scale conditional Probability
Density Functions (PDFs) reveal Markovian properties beyond the Einstein-Markov scale. The Kramers-Moyal
coefficients display linear and quadratic dependencies, and the Fokker-Planck equation accurately reproduces
empirical conditional PDFs, with stationary solutions matching observed Kappa distributions. Scale invariance,
characterized by power-law behavior and self-similar PDFs, holds up to ~0.4 s in most regions but breaks in
day-side reconnection jets. These findings support the universality of the Markovian cascade description across
the magnetosphere, while identifying region-specific deviations that reflect differing energy dissipation
mechanisms.

1. Introduction

Turbulence is a prevalent phenomenon in numerous natural systems, particularly in fluids with embedded
magnetic fields (Biskamp, 2003; Frisch, 1995), and remains in the ongoing debate within the plasma research
community (Matthaeus, 2021). Space and astrophysical plasmas serve as natural laboratories for investigating the
turbulent dynamics (Bruno & Carbone, 2016; Chang, 2015). This complex phenomenon encompasses both
stochastic and deterministic elements (Echim et al., 2021). Complex systems possess spatial and temporal in-
homogeneities, and are composed of many interacting subunits, in which the nonlinearities have an important
role, so complex spatio-temporal structures appear. Such nonlinear and multi-scale interactions may lead to
behaviors not easily predicted knowing only the behavior of individual subsystems. These large-scale emergent
behaviors can be either beneficial in facilitating energy transport through the magnetosphere, or detrimental by
triggering instabilities that disrupt spacecraft operations and communication systems. It is difficult to compre-
hensively understand all of complex systems dynamics, so some simplifications and reductions are required
(R. Friedrich et al., 2011). The analysis of the systems behavior should be based on the nonlinear mutual in-
teractions and determination of the characteristics of fluctuating forces. This leads to a problem of retrieving a
stochastic dynamical system from data. The challenging task is to characterize the clearly visible structures of
turbulent flows and their variability (Frisch, 1995). In this work, we use the term structures to denote the relatively
orderly components within complex systems. Mathematical description of structures is the point of interest, and
the structures must be linked to some special features of the system.

One particularly challenging case of turbulence is the small-scale (kinetic) structure and its deviation from the
Gaussian nature (e.g., Alexandrova et al., 2008; Matthaeus, 2021). This deviation is related to the local structure
of turbulent flows solution described by Navier-Stokes equations, and to the problem of special small-scale
coherent structures, which explain the anomalous statistics (Davidson, 2015). In turbulence theory, coherent
structures refer to spatially phase-correlated velocities or vortices that span the entire extent of a structure. This
phase correlation allows one to determine structural forms through the averaging method, that is troublesome if
they are not fixed in a specific location or time. Then one could ask what are the basic features of the complex
structures? Most of the approaches concern the statistical structure functions, stochastic and deterministic
structures analysis, or linear statistical correlation measures. A standard time series analysis of turbulent data
typically includes finding Lyapunov exponents, fixed points, (un)stable limit cycles, or fractal dimensions
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(R. Friedrich et al., 2011). However, in such systems, no matter how useful these methods are, the 1- or 2-point
statistics may not be enough to fully explain the observed complexity (Peinke et al., 2019).

Therefore, motivated by the requirement of description of turbulent structures, we employ the introductory data
and structural analyses, and consider an alternative method which takes advantage of the N-point and N-scale
(N> 2) joint statistics to provide a broad characterization at arbitrarily many points (R. Friedrich & Peinke, 1997,
Macek et al., 2023; Peinke et al., 2019; Strumik & Macek, 2008a, 2008b). General N-scale joint statistics can
capture any sequential ordering of any patterns as multi-scale structures, and can be used to find higher-order
statistics. In a physical sense, the ordering of N-scale statistics can be seen as a downward turbulent cascade,
describing interaction between structures from higher to lower scales in a hierarchical manner. This concept can
naturally be linked to a phenomenological Richardson (1920) notion of turbulence, which states that a turbulent
flow is composed of eddies of varying sizes. Sizes of these eddies define a characteristic length scale L, char-
acterized by flow velocity V, and time scales 7 that depend on the length scale L. Large eddies, which are
inherently unstable, break down to smaller eddies, so the initial kinetic energy is divided into smaller eddies which
inherit this energy, and so on. This process continues consistently, with energy being transferred from larger to
smaller scales of motion until reaching a sufficiently small length scale, where the viscosity of the fluid dissipates
the kinetic energy into internal energy. This final range is called a dissipation range. Moreover, the intermittency
phenomenon, characterized by deviations from such a self-similar cascade process at small scales, is regarded as
one of the key signatures of turbulence (Frisch, 1995). In complex systems, such structures often have higher-
dimensional forms. However, we presume a simplification of cuts, which may cause the clear structures to
somehow deteriorate, but we employ multi-scale statistics to comprehend coherence with respect to higher-order
statistics (see also A. Nawroth & Peinke, 2006). The Earth's magnetosphere presents an ideal environment to
investigate these turbulence concepts, as it contains regions of vastly different plasma parameters, magnetic field
topologies, and energy transfer mechanisms—all accessible through the high resolution spacecraft measurements.

By employing this phenomenological approach, we can analyze how the scale-dependent structures change with
scale instead of considering the standard time evolution. Following our previous studies (Macek et al., 2023;
Macek & Wojcik, 2023; Wojcik & Macek, 2024), we aim to extend the recent findings of the so-called Markovian
framework to diverse plasma solar wind regions of the Earth's magnetosphere (MSP) including both day- and
night-sides (magnetotail) of the Earth's magnetic field. In such regions some crucial phenomena appear, such as
the Electron Diffusion Region (EDR), which initiates the magnetic reconnection process. This Markov frame-
work is known as the inverse problem (or more physically a reconstruction method), that is, by taking a data set
(time series) and by employing certain parameter estimation techniques, a model is established to describe the
dynamics of the underlying process. Such techniques include histogram-based methods, kernel-based estima-
tions, maximum likelihood estimations, statistical moments, or prediction models. On that note, we contribute
evidence that the analyzed phenomenological downward turbulent cascades have Markovian properties, that is,
the processes are memoryless in scale. Next, we propose unified estimates for the Kramers-Moyal (KM) co-
efficients. We have used a kernel density estimation (KDE) to find the KM coefficients since it is faster and more
efficient, than the base histogram-based method (compare Macek et al., 2023), when dealing with relatively
smaller data sets. Then we provide the Fokker-Planck (FP) equation in scale, with non-zero drift and diffusion
coefficients, for the hierarchical ordering of the N-scale transition statistics. Such an FP equation governs the
scale dependence of the conditional Probability Density Functions (cPDFs), and may enable derivation of some
other features from scaling behavior to thermodynamics (including a relation to structure functions) (Peinke
etal., 2019). We strictly demonstrate that the solution of this equation accurately reproduces the empirical cPDFs
in both day-side and night-side selected regions of the MSP. Hence, we aim to show the universality of this data
analysis method based on the Markovian nature of the fluctuations in the sub-ion, kinetic domains. Alternatively,
one may employ an approach based on the stochastic Langevin equation with the same non-zero drift and
diffusion coefficients, which enables the execution of a short-term forecasting procedure (e.g., Peinke
et al., 2019).

The presented stochastic multi-scale (and multi-point) approach applied for analyzing the turbulent cascade of the
solar wind within the MSP is a phenomenological method. However, the theoretical model of Fokker-Planck
(Langevin) equation can be related to various physical systems. Among them we can distinguish, for instance,
connection to the Navier—Stokes equations (Laval et al., 2001), the Lundgren hierarchy (J. Friedrich, 2017),
nonequilibrium thermodynamics (Peinke et al., 2019), including turbulent flows (Reinke et al., 2018), salient
structures of complex systems (Nickelsen & Engel, 2013), or entropies, scale-invariance, and locality (Wdjcik &
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Macek, 2024) (including a nonextensive Tsallis (1988) entropy). This methodology holds for both microscopic
and macroscopic systems.

This study establishes, through multi-scale analysis of NASA's MMS mission data, that turbulent magnetic
fluctuations in Earth's magnetosphere exhibit universal Markovian cascade properties across diverse plasma
regimes, while revealing a critical asymmetry: scale invariance breaks in day-side reconnection jets but persists in
night-side magnetotail reconnection. By applying a stochastic framework combining Fokker-Planck equations
and structure function scaling analysis, we demonstrate that these statistical signatures correlate with fundamental
differences in plasma environment geometry and solar wind coupling. The findings provide new insights into how
energy cascades and dissipates in different magnetospheric regions, emphasizing where universal turbulence
properties hold and where region-specific physics (such as magnetic reconnection) dominate.

This paper is structured as follows. In Section 2 we present the spacecraft data description, including introductory
statistical data analysis, and discuss employed computational methods. Then, in Section 3 we provide and
evaluate the plasma parameters and other physical quantities, as well as investigate the power (energy) spectral
densities in the inertial and kinetic ranges in all selected regions of the MSP. Next, in Section 4 we introduce the
employed methodology, including the stochastic Markovian framework of a turbulent cascade problem in a
mathematical manner, and propose the dynamical and stochastic equations at different scales. Consequently, the
main results of this paper are presented in Section 5, which is divided into several subsections. We analyze the
time series stationarity, examine the power spectra in a frequency domain, then confirm the Markovian character
of the B-field multi-scale statistics, estimate the unified KM coefficients, compare the derived (generalized)
Kappa distributions with the empirical PDFs, and eventually confirm the universal scale invariance in most cases
of MSP. Finally, in Section 6 we present the conclusions of our analysis, briefly discus the advantages and
limitations of the demonstrated stochastic method, and mention the potential expansion and further development
of the Markovian framework.

2. Data Description

The Magnetospheric Multiscale (MMS) mission began in March 2015 launched by NASA (Burch et al., 2016), and
still in operation until around 2037 (Burch et al., 2024), has been inspired by the strategy of the ESA Cluster
mission. It uses four satellites (MMS 1-4) in a tetrahedral configuration with identical instruments to observe
significant phenomena, for example, the magnetic reconnection and a magnetic turbulence. The MMS measures
gradients evolving along an equatorial orbit, with considerably small spacecraft separations at electron scales. The
instruments also measure plasmas, magnetic and electric fields, velocities, temperatures, and other particles with
high time resolution and accuracy. Hence, the MMS mission data allows one to study the magnetic reconnections
and other plasma instabilities, shock physics, Flux Transfer Events (FTE), flux ropes, and boundary layers, wave
and turbulence, plasma jets, Coronal Mass Ejection (CME) impacts on the magnetosphere (MSP), and any other
research related to single- and multi-point measurements of the mission. MMS observations are perfect for
studying kinetic and inertial scale turbulence in the near-Earth space environment.

The main part of this paper consists of the analysis of the MMS measurements of a magnetic field strength

B = (B,,B,.B,), with the total magnitude |B| = /B2 + B2 + BZ, in various regions of the MSP. We have
selected 10 different time intervals which are displayed in Table 1. We have observations from the MMS1-3
satellites (2nd column) from the FluxGate Magnetometer (FGM) sensor (Torbert et al., 2016), of the Burst-
type, level L2 scientific data, in the Geocentric Solar Ecliptic (GSE) Cartesian coordinate system. The resolu-
tion of these three component B-field data is truly high, namely Azz = 7.812 ms, which gives us a sampling
frequency of Fs = 128 Hz. The 1-D data from MMS1-3 instruments were analyzed to isolate temporal scale
dependence of magnetic fluctuations. This approach prioritizes continuous 128 Hz sampling over spatial cor-
relations to resolve scale-localized coefficients.

Since we analyze the latest data sets from around 03.2022-12.2023, we note the current operational status of the
MMS 1-4 instruments (Burch et al., 2024). Most of the instruments are operating nominally, but with a few
exceptions (as of July 2024). For MMS4 the Fast Electron instruments DESO and DES1 are non-operational,
which are part of the Dual Electron Spectrometer (DES) system. Both are responsible for measuring the energy
and angular distributions of fast-moving electrons in the Earth's MSP, and help to investigate physical processes
like magnetic reconnection and turbulence. This defect can hinder our ability to fully understand electron-scale
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(a) MP

I:vlt)loj‘gelected MMS1-3 Intervals With Calculated Statistics of Turbulent Data

Case MMS Date Time begin End Location T; [%] Rng N K
(a) 1 2023-12-15 22:05:13 22:27:42 MP 20.6 65.1 2.4 13.7
(b) 3 2023-10-03 20:14:23 20:27:32 QPSC 51.2 39.8 0.53 243
(© 3 2023-06-17 10:27:13 11:00:12 LSMC 224 17.3 0.15 2.49
(d) 1 2023-06-13 17:00:23 17:42:32 MSMC 20.2 19.6 —0.7 428
(e 2 2023-02-21 16:39:03 16:56:22 BSW 35.6 8.8 =il 2.98
) 2 2022-08-19 03:15:23 03:36:43 LEF 70.3 39.6 0.61 2.02
(2) 1 2022-07-11 12:05:23 12:39:33 RCPS 33.7 252 —0.1 2.05
(h) 2 2022-05-11 19:35:53 19:44:43 QPBS 37.5 30.8 0.28 1.62
) 3 2022-05-04 21:07:33 21:21:32 HSMC 23.1 24.5 —0.4 3.38
(@) 2 2022-03-13 15:59:03 16:53:23 MCRIJ 20.1 120.5 -1.9 9.31

processes phenomena. The Dual Ion Spectrometer (DIS) systems are still well operating. The two Active
Spacecraft Potential Control (ASPOC) instruments A1E1 of MMS2, and A2E3 of MMS4 are inactive, meaning
that the spacecraft's potential cannot be actively regulated. The uncontrolled potential can affect the accuracy of
measurements made by electric field and particle instruments. Since our investigation of the plasma parameters
requires observations from these apparatuses, we have limited our analysis to the MMS1-3 instruments. Notably,
all the magnetic and electric field instruments are still fully operational.

The MMS Burst-type instrument has limited capabilities, with only 4% of all data being down-linked daily, so the
interval selection criteria must be highly precise. Previously, identification of the near-Earth regions, such as the
magnetopause (MP) or magnetosheath (MSH), has been purely based on the gradients in plasma parameters
analysis. Now the machine learning algorithms prove to be helpful. To follow the best practices of modern
scientific programming, we have employed various open source packages. The machine learning Recurrent
Neural Network (RNN) approach presented by Argall et al. (2020), introducing the MMS Updated Scientist-in-
the-Loop (SITL) Ground Loop System, enables us to search for distinct turbulent (and magnetic reconnection)
regions of the MSP with greater precision and speed. Hence, in Table 1 we present all the selected data segments
identified using this GLS-MP Python package (see also C. Small et al., 2020; C. R. Small et al., 2020) and the
TensorFlow Keras neural network framework (Chollet et al., 2015). Additionally, to study the energy transfer into
the MSP, we have employed other open source packages, that is, AstroPy et al. (2022) for the units conversion,
PlasmaPy et al. (2024) for the bulk solar wind parameters analysis, and PySPEDAS (Grimes et al., 2022) for the
basic time-series and orbit plotting.

Additionally, in Table 1 for all selected regions of the MSP (see exact positions in Figure 1) the spacecraft have
been located at geocentric apogee distances of up to 29R; (R = 6371.2 km). For each sample, the corresponding
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Figure 1. Depiction of the MMS1-4 spacecraft orbits in the GSE coordinates in XY coordinate plane.
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Table 1, for each case. Both day-side (on the right) and night-side (on the left) regions of MSP.
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Figure of Merit (FOM) ranking is conventionally split into four categories, with values in [0,200]. The predicted
encounters of Sub-Regions of Interest (SROI) in given locations (abbreviations in 6th column) are as follows: (a)
MP: low shear MagnetoPause (FOM: 150), () QPSC: full Quasi-Parallel Shock Crossings (FOM: 130), (c)
LSMC: long Low Shear MagnetoPause crossing (FOM: 150), (d) MSMC: Moderate Shear Magnetopause
Crossing with large V, reversal and small V, jet and reversal (MP crossing adjacent to dipolarization, FOM: 160),
(e) BSW: clear Bifurcated Solar Wind current sheet with a reconnection jet (FOM: 150), (f) LEF: Large
Earthward Flows with turbulent plasmasheet crossings (EDR region, FOM: 180), (g) RCPS: Reconnection event,
B, and V, reversals, Earth-ward to tail-ward flow of 600 km/s, central Plasma Sheet (FOM: 180), (h) QPBS:
Quasi-Perpendicular Bow Shock (FOM: 110), (i) HSMC: High Shear extended MagnetoPause crossing (FOM:
160), (j) MCRIJ: full Magnetopause Crossing with a Reconnection Jet (FOM: 150).

Since the MP moves back and forth over time, we differentiate between four classes of crossings: partial, low
shear, high shear, and complete in cases (q, ¢, d, i, j). The MP region is interesting since it is a primary location of
the mass, momentum, and energy transfer into the MSP. Generally, the MP crossings have similar field and
plasma gradients as the bow shock (BS) crossings (cases (b, 1)), but EDRs exhibit larger amplitude variations than
the MP crossings (Argall et al., 2020). Cases (e, f, g, j) include selected EDR (and reconnection) regions: at the
day-side boundary, where a significant guide field exists; and in the magnetotail, where the B-fields are nearly
anti-parallel. To identify the reconnection in the day-side ((e, j), of Figure 1) we have checked for large changes in
B-field components, in E-field wave power, and in the electron pressure and ion density. In the magnetotail ((f, g)
of Figure 1) we have checked the six trigger terms that respond strongly to reversals of B and bulk V (see Argall
et al., 2020; Webster et al., 2018).

Next, in Table 1 we see the statistics of turbulent data, which collectively provide insights into the nature of the
turbulent plasma and its deviation from Gaussian statistics. In the 7th column we have a turbulence intensity
T; = op/(B), where oz—standard deviation, and (B)—average value of time series of B. It varies significantly,
showing differences in the magnetic field's variability relative to its mean strength. In case (f) the highest intensity
(T; = 70.3%) indicates high fluctuations in the B-field, which is typical of regions with strong Earth-ward flows
and turbulent plasma sheet crossings. In case (j) the lowest intensity (7; = 20.1%) corresponds to relatively
stable magnetic environment during a full magnetopause crossing, before and after the reconnection event. All
values are much higher than 7; = 17% reported by (Renner et al., 2001). Then, in 8th column we see range Rng of
data—difference between max and min values of a sample, which provides a measure of spread or dispersion of
data (not definitive due to e.g., extreme values). It gives insights into data outliers and into “wideness” of the data
set. In case (j) the largest range (Rng = 120.5) indicates a substantial spread, possibly due to reconnection-
induced large scale magnetic structures. In cases (¢, e) the smallest ranges (17.3 and 8.8) may reflect more
localized or less energetic processes. The 9th and 10th columns show correspondingly the data skewness S (3rd-
order B-field derivative), and flatmess K (4th-order) of our data sets (see Fuchs et al., 2022). In turbulence
framework the skewness and flatness quantify the asymmetry and intermittency of the magnetic gradient dis-
tribution, while flatness also diagnoses the intermittency of dissipation scales. According to Kolmogorov (1941)
skewness and flatness are independent of the Reynolds numbers Re;, but (Kolmogorov, 1962) predicts depen-
dence of flatness on Re;, so it is still worth analyzing. Negative S observed in: (a) S = —2.4 and (j) S = —1.9
indicates asymmetry favoring the tail of distribution, potentially caused by intense events or jets. Positive S: (b)
S = 0.53and (f) S = 0.61 may suggest a dominant forward (or Earth-ward) flows. The S ¢ [-2, 2] suggests a non-
normality. The flatness varies across cases. High values (K >4): (a) K = 13.7 and (d) K = 4.28 reveal highly
intermittent turbulence with strong small-scale structures. These regions are likely associated with enhanced
energy dissipation. Lower values (K <3): (g) K = 2.05 and (h) K = 1.62 indicate less intermittent turbulence,
that is consistent with smoother distributions of small-scale gradients. Examining these statistics provides the
primary picture of this turbulent environment. Case (f) with high 7; and positive S indicates a dynamic region
dominated by Earth-ward flows and intermittent structures. While case (d) with moderate T;, but elevated K,
shows an intermediate regime where small-scale dissipation plays a prominent role. Thus, we highlight the
diverse turbulence characteristics of the selected regions of MSP and their dependence on associated dynamics.

3. Plasma Analysis

By employing the Taylor (1938) frozen-flow hypothesis (TH) one can deduce spatial from temporal fluctuations at
a single point. This hypothesis assumes the existence of a mean flow, which enables the translation of spatial
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Izlt,loj‘ZCalculated Plasma and Bulk Solar Wind Parameter Characteristics for the MMS1-3 Interval Samples (Corresponding to Table 1)
Case  |B| 7| VI Va p n, n; d, d; Ap fe, fe, T, T ., T, Sie Sai
T eVl [=] [ [4] [] (kml (km] [m]  [Hzl [Hz [eV]  [eV] [km] [km] [Hz] [Hz]
(a) 67.43 1073.28 116.09 428.77 0.53 11.79 11.77 232 103.88 38.60 1887.54 1.03 103.34 108527 049 1828 1241 1.81
(b) 1327 20535 22577 4490 1.83 14.88 1527 159 6891 12.03 371.34 020 3148 19452  1.83 263.03 2341 0.54
(© 10.45 1668.27 17554 27263 3.77 0.63 070 7.72 31232 19092 29246 0.16 29242 165598 5.66 181.57 4.41 0.68
(d) 13.99 1492.07 21480 27557 231 1.03 122 6.89 269.85 166.66 39152 021 26234 1496.61 3.83 164.03 5.66 0.90
(e 6.23 37.61 180.02 4747 181 7.60 818 193 8038 11.73 17435 0.09 18.25 3476 334 956.85 3320 0.80
®) 16.77 6969.54 25873 37252 639 043 047 194 7209 1244 46948 026 2798.15 6731.96 20.27 18546 348 0.54
(2) 1442 1897.28 25479 88.08 563 076 071 1.17 3141 832 403.62 022 31561 1813.02 501 23729 6.89 098
(h) 17.75 99.37 25491 9436 2.62 20.77 1929 133 6253 8.57 496.74 0.27 25.09 9126 1.01 181.55 3199 0.71
@) 1836 466.14 143.07 172.89 297 1046 10.72 292 12645 3093 513.86 0.28 47773 49028 136 95.68 1449 2.15
Q) 94.09 39295 16790 27525 284 61.05 5555 0.77 3478 8.15 2633.84 143 5046 42831 028 20.80 41.38 581

structures past a stationary probe within a time period shorter than the inherent evolution time of the fluctuations.
Taking |V|—average flow speed, and 7—scale separation, we have r = z|V|. However, accuracy of the TH
depends on properties of the individual flows and on the statistics being measured.

For instance, Howes et al. (2014) and Klein et al. (2014) have discussed the validity of the TH in context of plasma
turbulence, particularly in relation to kinetic Alfvén waves and other plasma phenomena. They have explored the
conditions under which TH, which assumes a frozen-in flow for turbulence, breaks down, especially in the
dissipation range of plasma turbulence. In the majority of our analyzed events however, we find that the threshold
condition for super-Alfvénic flow is not satisfied. This indicates that the plasma dynamics in these intervals are
predominantly sub-Alfvénic, suggesting limited available kinetic energy (see again the cases description in
Section 2 and Table 2). Such sub-Alfvénic conditions are characteristic of more stable, magnetically controlled
environments and may not support typical shock formation or efficient energy dissipation by kinetic processes.

In Table 2, we provide the calculated plasma parameters (corresponding to Table 1), which define characteristics
of a plasma, and the bulk solar wind parameters obtained with the MMS data (see e.g., Schekochihin et al., 2009).
Given that the Burst and FAST-survey data types have different sampling frequencies, we interpolate the B-field
and DES (electron) data to the DIS (ion) common set of times. For the MMS mission the plasma measurements are
available at 150 ms for ions and 30 ms for electrons. From the MMS's Fast Plasma Investigation (FPI) particles
instrument, we calculate the mean total temperature |T| (given Ty and T, ), and from the FGM, DES, and DIS
instruments we estimate the mean: magnetic field strength |B|, ion and electron densities #; ., and ion and electron
temperatures T, ,. We also compute the E X B and V|, so we can calculate the common shock and plasma
parameters to describe their global and local behavior across the MSP. We calculate the Alfvén speed from

Vy = \/%? where p is the total mass density, and the dimensionless plasma parameter § = B’;’;BZ: . When > 1 the
0

B-field is not strong enough to significantly alter the dynamics, so the plasma motion is more gas-like, and when

p <1 the magnetic tension and magnetic pressure dominate the dynamics. Next, we find the inertial lengths for

ions and electrons d; = -&, where s is a particle, and ), is plasma (angular) frequency. The EDR region should
s

have a characteristic length scale of a few km and be much smaller than the Ion Diffusion Region (IDR). Plasmas

are typically quasi-neutral on length scales much greater than the Debye length A, = Fonk—zzT We also find the
ion and electron gyrofrequencies: f. = ‘z‘f;’lf (in Hertz); the relativistic gyroradius for ions and electrons:

s \—1/2
Ty = y'l';"‘%", where y = (1 - Cé‘) - Lorenz factor; and the Doppler-shifted characteristic frequency for ions
and electrons, related to the respective inertial scales, f; = Zv—id‘
s nd

The provided data sets reflect diverse solar wind environments, from low-density, higher-speed wind streams
(cases (¢, f)) to dense, slower wind regions (cases (b, h, j)). The mean B-field strength, spanning 6.23-94.09 nT,
shows variability tied to large-scale solar wind structures and local turbulence. In (j), where |B]| is particularly
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strong, the high magnetic pressure suppresses turbulence, leading to less energy dissipation at small scales
(Burlaga, 1995). For weaker fields (case (e)) the dynamics become more thermally dominated, consistently with
Bruno and Carbone (2016). The plasma f reveals a regime from = 0.53 in (a) to 6.39 in (f), which is rather
typical for these space regions. Low f cases, as in (a), indicate a dominance of magnetic forces, and may favor
structures such as flux tubes and Alfvénic turbulence (Schekochihin et al., 2009). High f cases align with ob-
servations in regions dominated by thermal pressure, where kinetic effects become pronounced, leading to
enhanced turbulence dissipation rates. Trend of higher  in weaker |B| cases may suggest an anti-correlation that
has been numerically confirmed in MHD simulations (Matthaeus et al., 1999). The borderline case (b), where
f =~ 1, indicates equipartition between magnetic and thermal pressures, often associated with transitional regions
between fast and slow solar wind streams. The Alfvén speed V, ranges from 44.90 km/s, to 428.77 km/s. High V
in (f) correlates with a strong B-field and low plasma density, signifying regions where magnetic waves propagate
efficiently, consistently with (Wicks et al., 2010). Then, the low V, values reflect dense, thermally dominated
plasma.

Consequently, the electron and ion inertial lengths d, ; exhibit similar trends, given their dependence on plasma
density. Cases with low densities, in (f), show high d,; indicative of weakly collisional plasmas. These larger
inertial lengths suggest enhanced kinetic-scale activity, where non-MHD effects become relevant. Conversely,
dense plasma cases, in (j), demonstrate small d,;, consistent with the insight that turbulence is constrained to
fluid-like scales. The Debye length 1, also varies significantly. In case (c), the Debye length A, is larger, which
suggests a plasma where Coulomb interactions are weaker - this typically occurs in low-density or high-
temperature plasmas. The smaller 4, in case (j), indicates stronger charge screening, which is characteristic
of dense plasmas where electrostatic interactions are more effectively suppressed. For a detailed discussion on
deviations from classical plasma predictions, with similar results see for example (F. F. Chen, 2016). The Ap
correlates positively with 7, and inversely with n,, which reflects the sensitivity of charge screening scales to
thermal and density fluctuations in the solar wind. The gyrofrequencies f. ; and Larmor radii r; , reveal insights
into particle motion across the cases, for instance, in (j) f,, = 2633.84 Hz, reflecting dominance of a strong B-
field, while r;, = 0.28 km demonstrates tight electron gyration. In contrast, in weak magnetic fields like in (e), f,
and r;, are reduced, indicating looser particle gyromotion. These trends align well with gyrokinetic theory
(Schekochihin et al., 2009), which predicts such dependencies on |B| and particle velocity. The r;, also provide
critical benchmarks for kinetic-scale turbulence, with larger gyroradii signaling the transition to inertial range
dissipation, a trend observed in spacecraft data (Alexandrova et al., 2008). These statistical and physical trends are
consistent with prior works, and provide broader understanding of solar wind dynamics, enhancing our grasp of
space plasma turbulence. More precisely, while our observations reveal systematic variations in |B|, plasma £,
Alfvén speed, and length scales across regions, these trends align well with prior statistical surveys of magne-
tospheric turbulence (C. H. K. Chen et al., 2014; Leamon et al., 1998; Vech et al., 2018). Rather than replicating
the existing parameter-space analyses, given the extensive literature (Howes, 2024; Verscharen et al., 2019), in
this paper we would like to focus on how these variations contextualize our novel Markovian results based on the
MMS data (see also Afshari et al., 2024; C. H. K. Chen et al., 2019; Roy et al., 2022), and prioritize the uni-
versality aspects presented in the subsequent sections. We extend these foundational studies by quantifying how
Markovian universality emerges despite the parameter variations documented in prior literature.

4. Mathematical Methods

The small-scale (kinetic) structure of fully developed turbulent flows is considered to represent a universal state
defined by statistical stationarity, homogeneity, and isotropy. Physically, this state is characterized by the
presence of an energy flux, which is injected into for example, the fluid motion at larger scales and is continuously
transported to smaller scales caused by the inherent instability of vortices of a scale 7 to perturbations on smaller
scales. This process, known as the turbulent cascade, describing the small-scale structure of turbulence, is
typically studied through the statistics of magnetic, electric field, velocity fluctuations, or any other macroscopic
variables (R. Friedrich et al., 2011; Risken, 1996).

We suppose a complex structure in space x and time ¢ is given by some physical quantity u(x,), such that
Su(x,t) = e[u(x + er,t) — u(x,t)], where e is a unit vector in a direction along which spatial increments are
computed (Renner et al., 2001). Using a Taylor (1938) frozen-flow hypothesis, one can assume that temporal and
spatial structures are statistically similar. However, both analyses yield equivalent results whether they are
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conducted in space or time, in this case we can stay with temporal time scales only. Assume that only one di-
rection e is of interest and that the defining physical quantity is a scalar u(¢). We consider the statistics of relative
changes from many-to-one point in time of the total magnetic field magnitudes B = |B|. Taking B(¢) with a fixed
t> 0, we introduce the time scale 7;:=t; — ¢, for i = 1,...,N, giving time differences. Then the (left-justified)
Sfluctuations/increments of the magnetic field magnitude B are:

bes(t) = B(i + 1) — B, (1

fori = 1,...,N, which describe the turbulent system (Macek et al., 2023; Macek & Wo¢jcik, 2023). Magnetic
field fluctuations are used in turbulence as a proxy of the amount of energy that is contained at a given scale 7 into
the system. We also consider b;:=B(f) — |B|, where |B| is a mean magnetic field magnitude, for multi-point
statistics (to differentiate from multi-scale statistics). For the alternative right-justified approach assuming the
spatial structures see (Peinke et al., 2019, Figure 2 hierarchical ordering), and for the centered approach see
(R. Friedrich et al., 1998; Marcq & Naert, 2001).

The increments Equation 1 highlight the effects of scales of the order of separation 7. It is still compelling to inspect
if the analyzed cascade exhibits statistical self-similarity and scale-invariance behavior (see Belardinelli
etal.,2024; Benellaetal., 2023). When 7 is scaled by a dilation parameter 1 € R™, then the increments are globally
scale-invariant if scaling occurs with the unique scaling exponent f, thatis b, ;(f) = y b, ;(t), with f independent
of 7;. If these fluctuations exhibit global scale invariance, larger structures gradually divide into progressively
smaller structures. When this process is homogeneous, each structure decays in the same way (Kiyani et al., 2009).

If the quantities b, ;(r) and P b, ;(t) have the same statistics, they are called (strictly) self-similar.

The Power Spectral Densities (PSDs) serve as a statistic to scrutinize the scale-dependent behavior of turbulent
fluctuations and are analogous to examining autocorrelation function. Solar wind turbulence description also
focuses on the analysis of the mean (absolute) n-th order structure function, given by:

N
5. = b0') = 4 b O @)
i=1

where n—moment's order, and N—sample size. Hence the S,(zr) displays a power-law scaling behavior
S,(7) ~ 7. However, in the case of a (dlownward) turbulent cascade as postulated by Landau and Lifshitz (1987),
the scaling exponents ¢, exhibit multifractal scaling behavior, due to highly intermittent nature of the energy
dissipation rate. For the energy cascade, this intermittency is directly linked to non-homogeneity of the energy
transfer or dissipation rate. This implies that the efficiency of the energy cascade depends on space and time.
Scaling behavior, whether linear (fractal) or nonlinear (multifractal), can be verified by experimentally
(Frisch, 1995; Renner et al., 2001). However, the (multi)fractal approach focuses on the statistics of the measure
b.(¢) at a single 7, while for a complexity of the turbulent cascade we want to consider multiple scales z; V;.

Turbulent cascade can be characterized by various methods, such as by differential equations in variables b, and 7;
by self-similar structures, that is, fractals or multifractals; or by the Probability Density Functions (PDFs) P(b,, 1)
of b, on scales 7 (equivalent to structure functions). We want to analyze the multi-scale statistic, that is a probability
of finding a sequence of events b, ; for scales 7; V;_; y. A more engaging quantity though is a conditional
probability of obtaining the value b, ; at one specific point under the condition of the remaining events. Then, a
turbulent cascade can be viewed as a stochastic process, governed by the N-scale joint (transition) conditional

Probability Density Function (¢cPDF): P(b, 1,7y | by5.72; ...: b y.7y) With P(b,;,7; | b,;.7) = W,
i T

for 7; < 1,, being conditional PDF, the two-scale joint PDF: P(b, ;,;; b, ;,7;), and a marginal PDF: P(b_ ;, ;). For
the downward turbulent cascade the smaller scales 7; are nested inside the larger scales 7;, 1, so we consider the
hierarchical ordering of the increments (b, ), as scale dependent fluctuations moving from larger to smaller scales.

P(b.js7j | bris7;) P(bes7i

) . .
o) , for P(b.,7;) # 0, the reasoning can be inverted

Using a Bayes theorem P(b.;,7; | b.;,7;) =
(Wojcik & Macek, 2024).

We also note a difference between the multi-point and multi-scale statistics (see also Peinke et al., 2019). The
(N + 1)-point statistics are noted by P(by,b, 1, ...,b, ), or P(b,1,...,b, y,by), while the N-scale statistics are
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denoted by P(b, 1, ...,b,y), in terms of scale-dependent increments b, ;, following Equation 1. If the cPDFs are

independent of b;, then P(b,; | b,;_1;by) = P(b,; | b.;_1), but there exist experimental evidence that b, ; depend
on B(z) itself (see e.g., Sreenivasan, 2004). From multi-point statistics one can derive the multi-scale statistics
using certain coordinate transformations, but it does not hold in reverse (A. P. Nawroth et al., 2010). For instance,
even a simple fluctuation of Equation 1 can be referred to as 1-scale or 2-point statistic in scale. All the following
equations, which are presented for N-scale statistics, can be rewritten in the form of (N + 1)-point statistics, by
conditioning on one additional variable (see Stresing & Peinke, 2010).

Consider a dynamical complex system with state at time ¢ represented by X(z). If the state of this system at initial #,
is known, given by X(#y) = x,, the X(¢) is a random variable, for 7>y, and probability of X(¢) at successive
instants ¢, ...ty is given by N-scale joint cPDF: P(X, € [x;,x; + dx;) Vi—. v : X

T = Xy fOrt()S.‘.StN),

then X(7) is a stochastic process. We convert the stochastic process X(¢) to a process in scale X(z), and this
stochastic variable X(7) is a turbulent increment of the B-field magnitudes in scale 7. Thus, b, = X, is a stochastic
variable and (b,,); defines a stochastic process. This introduces the Markovian framework for investigation of
evolution of cPDFs and the joint statistical properties of fluctuations on scales. If (b,;), is a stationary process,
then this process is Markovian if the N-scale joint cPDF is memoryless, given:

P(bey,71 | bepstas o5 boysty) = Plbey, 7y | bep,12), 3)

for 0<7; <7, <... <ty. Stochastic process is memoryless if the most recent conditioning, say (b,,,7,),
completely determines transition probability from present to next state of the process. If Markov condition is
fulfilled, then using a Bayes theorem, it is fulfilled in the other direction (Renner et al., 2001). Then using
definition of N-scale joint cPDF and a memoryless property of Equation 3, we get a relation for the joint N-
scale PDF:

P(br,l’Tl; e br,N’TN) = P(br,l’Tl| b‘[,ZvTZ) P(b‘r,2’72| br,S’TS) :

4

oot P(bey—1: Tt | b Tn) - P(bens Tw)- @
Having P(b, y,7y) and P(b,,,, %y | brpn+1,Tm+1) One can describe Markov processes. From Equation 3 we know
that the Markov property corresponds to a 2-increment closure for the joint multi-scale statistics. However, the
two fluctuations b, ; and b, , are considered for three magnetic field values, at three time scales, hence the Markov
property is also a 3-scale closure of a general N-scale joint PDF of Equation 4. Empirical evidence shows that the
Markov property can hold for the turbulent cascade from the Einstein-Markov scale 7y, &~ 0.9Ar (A7—Taylor
length scale) which suggests that molecular friction causes the break-down of the Markov assumption (Liick
etal., 2006). Notably, in collisionless plasmas the Taylor scale 1; reflects kinetic dissipation processes rather than
molecular viscosity (see Roberts et al., 2024; Weygand et al., 2009, and references therein). For instance,
Matthaeus et al. (2008) demonstrates that in MSP plasmas correlates with d; and r; , not Kolmogorov-like viscous
scales.

By integrating over one quantity, say b, , for 7; <7, < 73, and using a memoryless property, from Equation 4 we
obtain the generalization of Equation 3 called the Chapman-Kolmogorov (CK) equation (Risken, 1996):

+oo

P(b.,7 | be3,13) = / P(b. 1,71 | brp,72) P(bep, 7o | b3, 73) dby s, (5)

—0o0

where (71,7,,73) —set of time scale parameters. It is a necessary requirement for a stochastic process to be
Markovian (Renner et al., 2001), though it is not sufficient (Peinke et al., 2019). Markovianity can explicitly be
studied by testing the memoryless property of the Equation 3. This complementary condition is important, since
the non-Markovian processes fulfilling the CK Equation 5 exist (see e.g., R. Friedrich & Peinke, 1997; Tutkun &
Mydlarski, 2004). For higher-order problems, alternative Markov test methods are available including conditional
characteristic functions (B. Chen & Hong, 2012), copula-based characterization (Ibragimov, 2009), or random
forest algorithms (Shi et al., 2020).
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One can obtain the equation for evolution of the transition PDF from the CK Equation 5, called the Kramers-
Moyal (KM) forward expansion, given by Risken (1996):

S k
RLCAIUEY Z( ) (D® (b, ) Pbrot | b)), ©
1

where the coefficients D (b,,7), called Kramers-Moyal (KM) coefficients are:

1 1
DX (b, 1) =— lim ——MP(b,,7,7"), (7
k! —/ 50T — 7/
+oo
M® b, 7,7") = / (b =b) P(by.7' | by7)db,s. (8)

The first minus of Equation 6 is due to evolution of scales from larger to smaller ones. We observe that each KM
coefficient of order k is just a derivative of the conditional moment of same order (with the exception of a
multiplicative constant 1/k!). The errors of the M® coefficients, essential for calculating the errors of linear
interpolation of the corresponding conditional moments in the KM coefficient as functions of 7/, are given

by: 02 (bert') = MP(b,,7') = (M (b, 7).

The Markovian framework is an extension of the multifractal description of stochastic processes (see e.g.,
R. Friedrich et al., 2011), thus we note a bridge between these both approaches from the KM expansion
(Equation 6) taking the unconditional PDFs. By multiplying with b7 (f) and integrating with respect to b,(f) the n-
th order structure function is:

954 Z(—l) f ,,n< >(D(k)(b,,r) P(b..7)
)

— Z (n — k)’f bn k(D(k)(bT,T) P(bT,T))

The structure function S,,(z) is well defined and closed solely if the contributions in b, are linear for the first KM
coefficient, and quadratic for the second-order coefficient.

As we have previously argued (see Macek & Wéjcik, 2023) the M® (b,,7,7") coefficients can be obtained from
empirical data, while D® (b,,7) cannot—only by extrapolation in the limit 7 — z/ — 0. Here we employ a
piecewise linear regression with breakpoints (rather than simple linear regression), allowing us to capture po-
tential structural changes in the analyzed relationships. The optimal number and positions of these breakpoints are
assessed by the Akaike (1973) and Bayesian (Schwarz, 1978) information criterions (see also Wojcik &
Macek, 2024). This effectively serves as an optimal model-selection analysis of this procedure. Then, by sys-
tematically varying the range over which we can perform linear fits (varying scales Ar down to 128 Hz), we
observe how the estimates stabilize at this smallest scale, confirming the robustness of our extrapolation
approach. (see e.g., Roberts et al., 2024, Figure 5). This ensures both numerical stability and optimal structural
identification. The small-step approximation, for which M® (b,,7,7') = D® (b,,7)r' + (9(1"2), can be achieved
by using the lowest spacecraft sampling rate Ar (Macek et al., 2023): D® (b,,7) = ﬁiM(k) (b,,7,7"). However,
other meaningful approximations and corrections also exist (see e.g., Honisch & Friedrich, 2011; Lehle, 2011).

For a general stochastic process and in most physical applications 1st and 2nd order KM Equation 6 are non-zero
and statistically significant, while 3rd and higher-order coefficients gradually approach zero. However examples
of non-zero 4th order coefficients are known (see R. Friedrich et al., 2011; Tutkun & Mydlarski, 2004;
Tabar, 2019; Wéjcik & Macek, 2024). This is summarized by the Pawula's theorem (Risken, 1996). If (a)
D®(b,,r) =0, for k>2, then processes are deterministic (e.g., Ornstein-Uhlenbeck process); (b)

DW(b,,7) = 0, for k>3, then process is limited to 2nd order and is statistically continuous, which results in the
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Fokker-Planck equation; (¢) D® (b,,7)#0 V,cy, then any truncation at order k>3 would give non-positive
PDFs. From the Pawula's theorem we have the Fokker-Planck equation (Risken, 1996):

OP(b.1lbs.7") 9

Jt _6717,

02
DW(b,,7) P(b,,7 | br,7') + 7 D (b,,7) P(b,,7 | b,7'), (10)

T

where the D12 (b,,7) coefficients are called drift and diffusion processes respectively. The marginal P(b,,7) has
to obey the same FP equation. From FP Equation 10 a bridge between multifractal approach and Markov
[framework is obtained: If the KM expansion (Equation 6) shortens to FP Equation 10, then the structure functions
are given:

0S,(7) _ _
—# = n{b"'(t) DV (b,, ) + n(n — D){(b"~*(t) DP (b,,7)) (11)
The FP Equation 10 can be rewritten in the expanded form (see Equation 9 of Macek et al., 2023) of 2nd order
parabolic PDE. Hence, the master curve for invariant PDF of this equation can be evaluated by stationary solution

psr(b,) of FP Equation 10 from 5-[D® (b,,7) psr(b,)] = DV (b,.7) psr(b,). We have (Risken, 1996):

b)=N, " DOGD) O o) = No exp (@b 12
pST( ‘r) = INg €Xp _mm —In ( ‘r’r) - Oexp( ( 1))7 ( )

where Ny—integration constant, and ®(b,) —potential. Gradient potential 9, ®(b,) is interpreted physically as a
force of a medium given by the mean field quantities D12 (b, 7). The interaction of this force on the path velocity
0.b, leads to the entropy variation due to the surrounding medium, depending on evolution of (b,;),. Having all
these quantities one can find a total entropy production collisionless turbulence (see Peinke et al., 2019). For
instance, Ewart et al. (2025), through kinetic 1D-1V simulations, showed how stochastic heating cascades energy
irreversibly to fine-scale structures in phase space, leading to measurable entropy production. Also, Zhdan-
kin (2023) introduced a generalized entropy framework using Casimir invariants, showing how nonlinear phase-
space cascades effectively break these invariants and increase entropy. This supports our interpretation that
entropy variations provide meaningful diagnostics for kinetic turbulence processes.

The FP Equation 10 describes a PDF of a stochastic process generated by the complementary Langevin equation.
Assume that I'(r) is &-correlated Gaussian white-noise, fulfilling normalization: (I'(z)) = 0, and
T(@) T(z")) = 26(r — ") (Risken, 1996). Cross-correlation means that assuming an even PDF at larger scales,
the stochastic process across scales generates skewness in the PDFs as a result of correlation of additive and
multiplicative sources of noise (Laval & Dubrulle, 2006). Then

—% = DD (b,,7) +1/D?(b,.7) [(2), (13)
T

db, = h(b,,7) dt + g(b,,7) dW,. (14)

are Langevin equations in partial and stochastic forms, where h(b,,7) = DV (b,,7)—drift term, g(b,,7) =

+/2D® (b,,7)—diffusion term, and {W, | 7> 0}—Wiener (Brownian) process in scale (Wéjcik & Macek, 2024).
Memorylessness implies that only §-correlated noise acts on the trajectory, and the noise has Gaussian distribution
(Anvari, Tabar, et al., 2016). Langevin Equation 14 with initial condition can be solved numerically using the
Euler-Maruyama method. This approximation of a true solution is the Markov process.

5. Results

This section presents a comprehensive stochastic analysis applied to MMS data across diverse regions of MSP.
We systematically build the case for universal Markovian properties in turbulent cascades, while identifying
physically significant exceptions.
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5.1. Stationarity

Analysis of time series has a long history in the field of nonlinear dynamics. However, the problem of dynamical
noise that is, the fluctuations that interfere with the dynamic evolution has been only briefly addressed (e.g.,
Anvari, Tabar, et al., 2016). The state of the subsystems of a complex system (as mentioned in Section 1) changes
over time and result in stochastic dynamics. The dynamics of parameters are generally nonstationary, and the
subsystems interact with each other in a nonlinear way. To apply our apparatus, it is essential to meet two
fundamental conditions: stationarity of the time series and the Markovian property.

To inspect whether the statistical properties do not change over time, one needs to analyze the stationarity of a
given data time series. The employed procedure is rather straightforward (Wdjcik & Macek, 2024, Appendix A).
Firstly, we search for any visible outliers and drifts in data, or trends and seasonality by analyzing the time series.
Then we evaluate the hypotheses of the Augmented Dickey-Fuller and Kwiatkowski-Phillips-Schmidt-Shin tests,
with a significance level of @ = 0.05, which focus on identifying unit roots that can indicate stochastic non-
stationarity, particularly related to random walks. Then, we wuse the 1lag-1 differencing:
Vb(t) = b(t) — b(t — 1) to obtain stationarity, where V—difference operator. For cases with the highest tur-
bulence intensity T; (see Table 1) we employ the second difference V?b(r) = b(t) — 2b(t — 1) + b(t — 2),
which is based on the observation that the autocorrelation function of b(¢) exhibited substantial correlations at
larger lags. We employ the linear interpolation of neighboring values to fill any empty data points in time series
(Macek & Wojcik, 2023). We also removed all the low-significance outliers at the largest B-fields.

We note that cases (e, f, g, j) include selected EDR (reconnection) regions, which in a physical setting can be
determined, for example, by identifying the large changes in B- or E- fields. These physical sudden changes of
magnitude, in a mathematical setting, can be regarded as jumps or discontinuities. Here, the models including
jump-term could possibly be favorable (see e.g., Tabar, 2019), however employing the 1ag-1 differencing and
the standard modeling approach presented in this paper is still suitable.

5.2. Spectral Analysis

To confirm the consistency of analyzed data with the popular characteristics of the small-scale turbulence, in
addition to the turbulence intensity 7; analysis, we analyze the scaling of the spectral densities in a frequency
domain. As mentioned in Section 4, the Power Spectral Densities (PSDs) serve as a statistic to scrutinize the scale-
dependent behavior of turbulent fluctuations and are analogous to examining the autocorrelation function. For the
spectral analysis we have used the Matlab (R2025a) language, with the open source package developed by Fuchs
et al. (2022). Since the authors analyze the velocity time series, certain function modifications have been made to
address the differences. We have taken into account the required turbulence-specific (HIT) assumptions, although
non-ideal homogeneous turbulence conditions are noticeable in a few cases. Here the 1-D spectrum can be
determined by the Fast Fourier Transformation (FFT) of time-varying signals through a single-point measure-
ments. The PSDs can be transformed to Energy Spectral Densities (ESD) by a simple transformation with sampling
frequency Fs. Following (Fuchs et al., 2022), we distinguish between: PSD = |FF T(data)|*/Lyy,, and
ESD = |F FT(data)|*/(Fs - Lyyy,), where Lg,,—number of data samples. The ESDs are normalized so that 6* =

Jo E(f)df, where o>—variance of the time series and the single-sided spectrum E(f) = 2ESD (2:Lgyn/2 + 1).

This scaling analysis is seen in Figure 2 of the Energy Spectral Densities (ESDs) plots in the frequency domain,
with additional averaging (moving average filter), for all data sets. We see again significant variations in turbulent
properties across different cases (a—;j). The spectra provide information on the energy cascade from large to small
scales and the transition from the MHD inertial range to kinetic dissipation range, resulting in dissipation of
magnetic and kinetic energy from turbulent fluctuations into particle heating and acceleration, as well as enhanced
entropy in the plasma system. The inertial range is a large scale interval defined from around energy injection
scale to approximately 10d; after which the kinetic scale emerges. Then the dissipation mechanisms are
considered in the collisionless regime typical of space plasmas, where particle-wave interactions and magnetic
reconnection are dominant. Calculated mean gyrofrequencies f, characterize the Kinetic regime (in Hz), while
mean gyroradiuses r;; define the kinetic interval (in km). Here, the most cases exhibit a power-law scaling close to
the expected Kolmogorov f /3
to kinetic scales and spectral steepening vary significantly. In cases (f, g) we see extended inertial range, with

spectrum (dashed lines), indicative of well-developed turbulence. The transition
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Figure 2. Energy Spectral Densities (ESDs) in the frequency domain, on logarithmic axes, of the high-resolution MMS1-3 turbulent data in the MSP. Typical inertial

range Kolmogorov spectra of f~

5/3

are reported with dashed lines. The steeper spectra in the kinetic range, until dissipation scales can also be seen. Data from the MMS
mission for B in ten cases (a—j) corresponding to Tables 1 and 2.

spectral break occurring at a higher frequency. This suggests a more efficient energy cascade which is likely
facilitated by strong Alfvénic turbulence and higher ion inertial length d;. This extended range aligns with other
studies on solar wind turbulence, where higher Alfvénic activity is correlated with an increased range of energy
transfer before dissipation (Bruno & Carbone, 2013; F. F. Chen, 2016). In contrast, cases (b, j) exhibit much
sharper spectral steepening beyond the inertial range, implying a more abrupt transition to dissipation, consistent
with the higher plasma density and electron cyclotron frequency in this region. It could be due to stronger electron
damping effects, as it corresponds to a high-density plasma environment with a strong background B-field. Such
conditions enhance electron Landau damping, which rapidly dissipates energy at small scales (Howes et al., 2008;
Sahraoui et al., 2009). Cases (c, e) are intermediate scenarios, where the spectral breaks occur at a moderate
frequency. It suggests a more balanced interplay between inertial and kinetic scale processes. Given the relatively
high S, kinetic instabilities could play a role in modifying the spectral shapes (see e.g., Matthaeus, 2021). For
instance, the hybrid-kinetic simulations by Arzamasskiy et al. (2023) show that pressure-anisotropy driven in-
stabilities, for example, firehose and mirror modes, significantly modify turbulence dynamics in high-$ plasmas,
steepening the energy spectra and regulating anisotropy. The kinetic simulations (Bott et al., 2025) illustrate how
whistler-mode heat-flux instabilities efficiently mediate electron scattering and energy dissipation under similar
conditions. Thus, the kinetic instabilities can influence spectral shapes observed here, particularly at high 4. Then,
case (i) presents a more gradual spectral transition, suggesting a mixed regime where both Alfvénic and kinetic
turbulence mechanisms could simultaneously be active. This comparative analysis of ESDs confirms the presence
of well-developed turbulence, with case-dependent variations in spectral evolution. The observed differences in
spectral break frequencies and dissipation slopes reinforce the idea that turbulence in space plasmas is highly
dependent on local plasma parameters. The results are consistent with previous turbulence studies in the solar
wind and MSH, demonstrating the complex interplay between nonlinear energy transfer and kinetic dissipation
mechanisms.

5.3. Markovian Properties

Motivated by the cascade picture from the largest to smallest scale, we want to check the hypothesis of Markovian
properties of turbulent data (Macek & Wdjcik, 2023). Hence, we firstly test the necessary CK Equation 5, and
then the sufficient memoryless property of Equation 3 to qualitatively prove the Markovianity of the process in
scale. If the necessary and sufficient conditions are fulfilled then the evolution of cPDFs has to be specified by the
stochastic evolution given by KM Equation 6.

For the available turbulent MMS data (see again Sections 2 and 3), we can verify both conditions experimentally.
The CK condition (Equation 5) can be tested straight from the data, using the integral formula for conditional
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Figure 3. The comparison between empirical single-cPDFs P(b, |, 7,|b,,7,) (colored curves), and double-cPDFs P(b, |, 7,|b,5,7;b,5 = 0,73) (dashed black curves)
for different time-scales. b, 3 = 0 is fixed, since for this value we get the peak of the cPDF. MMS data for | B| fluctuations. Data from the MMS mission for ten cases (a—

j) correspondind to Tables 1 and 2.

densities, while the memoryless property of Equation 3 can be verified for N = 3, that is, for the 3-scale cPDFs:
P(b. 1,71 | brp,72) = P(b, 1,7 | brp,72; b, 3,73), T) <7 <73, as described in Section 4. Notably, even a 1-scale
PDF P(b,,7) can characterize a complex system, and one can find all higher-order moments (b, (r)")
(Frisch, 1995), but one does not have any information about more than 1- or 2-scale correlations. Thus we employ
a three-scale cPDFs closure (R. Friedrich et al., 2011).

Since the necessary CK condition (Equation 5) has been thoroughly analyzed and proven for various scales in our
previous works using MMS data (see e.g., contours of Wéjcik & Macek, 2024), we refrain from reiterating the
analysis in this paper. We affirm though that analogous results are obtained within the broader scope in day- and
night-side of MSP in this study. Then, the sufficient memoryless property of Equation 3—a three-scale closure
simplification can be tested experimentally. By determining different fluctuations for same reference value, we
examine cPDFs P(b, 1,7, | b, 5,725 ... ; b,;,7;) of Equation 3. In Figure 3 we test the Markovianity by comparing
the empirical single-cPDFs P(b.,,7; | b,2,7,) (colored curves), and double-cPDFs P(b, 1,7, |b;5,75; b,3 = 0,73)
(black curves) for all analyzed cases. Note that we fix b, 3 = 0, because for this value the peak of the cPDF is
achieved (see also middle parts of Figure 4) and such conditioning makes the 2-D representation feasible. However,
the results are notably similar for other selected b, 5 values. The chosen time scale parameters 7; <7, < 73 (Sec-
tion 4) are taken such that 7, = 7; + Afg andz; = 7; + 2Atg, where Arg—lowest sampling time of the Burst-
type observations from the MMS's FGM sensor. Below a certain threshold value of 7 the Markov properties are no
longer valid, which indicates some structural change, that is, caused by small-scale coherent structures. Hence, we
have chosen 7, to be ~3 times greater than Arg, which gives us a lower-bound scale in relation to the Einstein-
Markov scale 7z, (Liick et al., 2006). Below this scale the stochastic process loses its memoryless property, and
it can be viewed as a scale below which the turbulence is no longer effectively §-correlated. This corresponds to
(71,72,73) = (0.02,0.0278,0.0356) s.

In Figure 3 we also see that the 3-scale cPDFs P(b, ;,7, | b.,,7,; b, 3,73) depend on b, , because the contours are
not parallel to the b, axis, so the 3-scale cPDFs cannot be reduced to 2-scale closure of cPDFs. This implies that
the features of fluctuations for only 1-scale, which can be done by examining structure functions of Equation 2,
are not complete, so a multi-scale approach is statistically correct. Nevertheless, the proximity of two corre-
sponding displayed contours yields evidence for the validity of the 3-scale closure. The close alignment between
these contours demonstrates that knowing b, ;3 provides no additional statistical information beyond what is
provided by b, ,. Similarly to the other MSP regions (Macek & Wdjcik, 2023), we observe that within the inner
core agreement is most pronounced since the statistics converge better due to larger number of samples of the
cPDFs. Hence the memoryless property of Equation 3 is valid for such time scale set in all the analyzed cases. We
have additionally verified that the CK Equation 5 is satisfied for larger scales, approximately up to 50 Atz = 0.39
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Figure 4. Comparison of the cross sections through the empirical single- and double-cPDFs under fixed magnetic increment b, 5 for all cases (related to Figure 3). The
parameter set (7y,7;,73) is in agreement with the previous figure.

s, which indicates greater universality in the scale-dependence. If the larger data set on kinetic scales is available,
then further larger-scale increments can be investigated, however, the validity of relation Equation 3 is suffi-
ciently strong (see Holstein & Kantz, 2009).

Then, in Figure 4 we have depicted the orthogonal cuts through the cPDFs for the chosen values of parameter b, ,
(at the top of each plot). As evident, the cuts through the empirical single-cPDFs (colored points) align quite
closely with the cuts through double-cPDFs (black curves), resulting in a great fits. Indeed only in a few cases the
colored points deviate from the lines in tails, but it appears to be caused by the data outliers and inherent numerical
noise. We can conclude then that both necessary and sufficient conditions of Equations 3 and 5 are fulfilled for the
chosen set on small kinetic scales in all considered cases. Notably, while we have shown these results for the
multi-scale statistics P(b, 1,7, | b, 2,72; b, 3,73) , the empirical examinations indicate that the same results hold for
the multi-point statistics P(b, 1,7, | b;5,7,; b, 3,73; by) of turbulent cascade. Analogous results for Markovian
turbulence have been showed for other simulations and data sets (see Benella et al., 2022; J. Friedrich, 2017,
R. Friedrich & Peinke, 1997; R. Friedrich et al., 1998, 2011; Fuchs et al., 2022; Liick et al., 2006; A. P. Nawroth
et al., 2010; Renner et al., 2001; Stresing & Peinke, 2010; Tutkun & Mydlarski, 2004).

5.4. Kramers-Moyal Coefficients and Parametrization

Evolution of (b,;); has Markov properties, no memory, and is a stochastic process that evolves in scale 7. It is
limited though to the time scales greater than the Einstein-Markov scale 7z, (small-scale cutoff) and smaller than
the experimentally discovered limits. Thus, a Markov process can be taken as a stochastic process, modeling the
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Figure 5. First and second KM coefficients Equation 7 as functions of magnetic increments b, for B = |B|. Dashed black lines show optimal fits to empirical values of
DW(b,,7) and DD (b,,7), with D® (b,,7) —in agreement with the Pawula's theorem. Data in cases (a—j) corresponding to Tables 1 and 2.

coarse-grained process. Using the empirical joint PDFs we find the cPDFs and thereby the equations for con-
ditional moments Equation 8 as functions of b, (see also Macek & Wojcik, 2023; Wojcik & Macek, 2024,
Appendix B). To derive the KM coefficients (Equation 7) we use a piecewise linear regression with breakpoints.
For each conditional moment, we compute values at multiple scale differences, and extrapolate in 7 — 7/ — 0
using weighted linear fits that prioritize smaller scale differences. This approach provides robust extrapolation
even with the limited Burst spacecraft data (e.g., Honisch & Friedrich, 2011).

In Figure 5 we see the results of this analysis for the four KM coefficients. We observe that in all cases the non-
parametrically obtained point-by-point DV(b,,7) coefficients have linear dependence on b, with some small

deviations, while D® (b,,7) coefficients are 2nd degree polynomials, with slightly larger deviations in a few cases
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(e.g., (f)). It is clear though that the D® coefficient is more affected by experimental noise (especially in tails). The
linear shapes of DV correspond to deviations of cPDFs from diagonal lines in Figure 3. The consistently linear
form of D across all MSP regions indicates a universal restoring force mechanism proportional to fluctuation
magnitude, analogous to a damped harmonic oscillator in physical systems. This linear drift term physically
represents the tendency of fluctuations to return toward equilibrium through wave dispersion effects. The quadratic
D@ reveals multiplicative random forcing that increases with fluctuation magnitude, consistent with nonlinear
wave-wave interactions that intensify for larger-amplitude fluctuations (R. Friedrich et al., 2011). Then, as
observed, all DW (b,,7) ~ 0, k > 3 within the experimental precision, so the Pawula's theorem applies. If D® > 01t
is sufficient to examine the ratio of the structure functions S4(z) to S,(z) of Equation 9. If it is small, then the effect of
the 4th order term can be neglected, which holds in this study. Hence, the KM expansion (Equation 6) truncates at
k = 2, and reduces to the FP Equation 10. In terms of the Langevin Equation 14, the physical interpretation of this
result is that the noise I'(7) acting on the process can be considered as Gaussian distributed in addition to its -
correlation. Thus we assume a general polynomial parametrization of DM (b,,7) = a,(¢) + b,(2) b,, and
DA (b,,7) = ay(1) + by(2) b, + c,(z) b*, where a,,by,a,,b,,c, depend on 7> 0.

However, for several reasons we can simplify it. Firstly, we expect that the PDFs are symmetric with respect to
zero. Also, the two additional parameters increase complexity of the solution of FP Equation 10, even if we would
assume dependence of coefficients of D® on DV (see Equations 7 and 8 and (Equations 14 and 15) of Belar-
dinelli et al., 2024). Then, the reduction simplifies the application of structure functions, {b,(z)"), that here
become equivalent to the absolute structure functions, {|b,(¢)"|), while in the more general approach these two
should not be confused. In short this fact can be proven by taking two FP Equation 10, one for P(b,,7) and second
for P(—b,,7), and inserting them to corresponding structure functions. After a few derivations, one can see that
these equations will differ in coefficients. Hence, without significant loss of accuracy (see also Reinke

et al., 2018) we eliminate the second terms in both DM and D(z), and assume a stricter parametrization:

Db.,7) = =b,(z
D (br’ ) bl( ) br’ (15)
p® (b;,7) = ay(7) + ¢5(7) bf.

By conducting a similar reasoning as Macek and Wdjcik (2023, Figure 5) of proposed b, a,, ¢, parameters we see
that they feature a power-law dependence on scales 7:

b,(r) = A%,
a,(t) = B, (16)
c(t) = Ct,

where the parameters A,B,C,a,f,y € R can be found experimentally (compare Macek et al., 2023). Since the
complete parametric study has been done in our previous papers, we refrain from providing all of the parameters
values, and list only the averaged ones. Anyway, these dependencies are just loose parametrizations of the
empirical findings, and other theoretical analyses may lead to slightly varying dependencies. We also discern the
mostly symmetrical fit of the D® (b,,7) on b, (compare Renner et al., 2001). The results proposed on D> may
be understood as the result of a projection of the high-dimensional problem of turbulence on the subspace of the
B-field fluctuations.

5.5. Fokker-Planck Modeling and Kappa Distributions

By inserting both KM coefficients (Equation 15) into the FP Equation 12 we retrieve the solution pgy (b, 7), which
is a PDF of the Kappa distribution (Risken, 1996):

I'(x) 1

pST(bﬂT) = : K>
T(c=1) byyrr [1 +l<&)2]

bo

(17)

WOICIK AND MACEK 17 of 25

85U017 SUOWILLIOD aAIERID 8|qeal|dde au Aq peusenob aJe sajoiLe YO ‘8sN Jo Sa|nJ Joj Aid1 8ulUQ /8|1 UO (SUOTIPUOD-PUR-SUIB)L0D A8 | 1M Afelq 1 jpul UO//:SdNL) SUOIPUOD Pue SW.B 1 8y} 88S *[GZ0Z/TT/TZ] Uo Akiqi]eulluo |1 ‘020vE0VISZ02/620T OT/I0p/woo As|im Aseidjpuljuo'sgndnfe//sdny wo.j pepeojumod ‘0T ‘SZ0Z ‘Z0r669T2



MID
ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Space Physics 10.1029/2025JA034020

where by = 4/ m—scale parameter, xk = 1 + zbc'z((’f))—shape parameter (regulating weight of the tails),

and a,(z), by(z) #0, while ['(x) = f° b~ e -db,—Gamma function. The  parameter represents the ratio of
additive and multiplicative noise in the diffusion term of the stochastic process. This scale-local Kappa distri-
bution emerges from the FP solutions of temporal Markov processes, independent of a 3-D spatial structuring.
This single-point focus enables direct comparison to solar wind studies (Matthaeus et al., 2016), while identifying
priority regions (e.g., day-side EDRs) for future multi-scale missions. This distribution is symmetric around zero,
with a peaked bell-shape, and approaches Gaussian as k — + oo (Macek & Wdjcik, 2023). In particular, FP
Equation 12 with D® (b,,7) constant in b, has Gaussian solutions. The mean parameter values, obtained through
a fitting of the MMS data, for smaller scales (up to ~0.4 s), of the stationary solution Equation 17 are: case (a)
k = 1.099, and by = 0.357, (b) k = 1.118, and by = 0.834, (c) k = 1.165, and by = 0.122, (d) k = 1.344, and
by = 0.083, (¢) k = 1.937, and b, = 0.085, (f) x = 1.071, and b, = 0.238, (g) x = 1.126, and b, = 0.178, (h)
k = 1.534, and b, = 1.276, (i) k = 1.025, and by = 0.241, and (j) k = 1.247, and b, = 0.998. As the scale
increases, the k also increases until reaching a Gaussian distribution in k — oo, as predicted by theory. Mean
k & 1.27 across data sets indicates strongly non-Gaussian statistics with pronounced tails, with highly intermittent
turbulence. Lower «’s represent enhanced probability of large-amplitude fluctuations compared to Gaussian
processes. The x < 1.5 indicates strong intermittency likely driven by coherent structures such as current sheets
(Pavlos et al., 2012). Then the corresponding non-extensivity parameter g = 2c2b-i- n = = 1
Tsallis (1988) mean entropy quantifies the degree of long-range correlations in the system, with higher g values
indicating stronger correlations.

~ (.22 in generalized

Finally, we note that considering a previous broader parametrization of Equation 15, one can derive the gener-

alized Kappa distribution with a symmetry parameter A (see Belardinelli et al., 2024, for Langevin approach).
Here, A = —2";—((?), and if A = 0, then the distribution is reduced to regular Kappa distribution of Equation 17. If
A>0 then the left tail of the distribution is higher than the other, and if 1 <0, the right tail is higher, and

nonvanishing odd moments emerge.

Knowing the parametrization of both D2 (b,,7) coefficients, the cPDFs can be obtained by the short time
propagator (Risken, 1996):

1 be—bs — DV (b1, 7))
P(b,,T|b1i,T/) ~ -exp( ( T o/ ( T )) , (18)

[4n7' D@ (br’ ,7) 47' D@ (b{/ ,7)

where ' = t© + 7gy,. This form is reached by implementing the scale step in units of the Einstein-Markov scale,

which makes the propagator depend on D? (b, 7) only. Using Equation 18 one can find the cPDFs and compare
them with the solutions of conditional FP Equation 10. The experimental cPDFs P(b,,7|b_s,7’) become noisy at
greater values of b,. Then by inserting KM Equation 15 into the FP Equation 10, we get (Macek et al., 2023):

2
[ax(0) + 20 ] D 1 [y () + des@)] -, T
: : (19)
+ w + [b1(z) + 2¢,(2)] P(b,,7) =0,

which can be solved numerically by Euler integration scheme, has been verified for stationary solution
0P(b,,7)/0t = 0, and agrees well with our previous results. This completes the demonstration of the FP
Equation 10 as a model of scale-dependent complexity.

In Figure 6 we compare the stationary (open circles) and non-stationary (gray dashed lines) solutions of the
evolution FP Equation 10 with the spacecraft empirical PDFs (colored lines), for all cases in the MSP. The 7
values are indicated in a corner of each plot distinguished by different shades. The curves on the semi-log graphs
have been shifted vertically from bottom for enhanced clarity. We observe the characteristic peaked leptokurtic
shapes of PDFs up to certain threshold scales. Following the downward turbulent cascade image—evolution of
PDFs from higher to lower scales, we notice the continuous deformation of the increment PDFs and a stronger
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Figure 6. Empirical PDFs (colored lines) for a total strength of magnetic field B = |B| compared with the stationary (open circles) and non-stationary (gray dashed
lines) solutions of the FP Equation 10 (shifted from bottom to top) for given time scales. Data in cases (a—j) corresponding to Tables 1 and 2.

deviation from the Gaussian PDFs. We see the non-Gaussian tails, which indicate intermittency in the time series
structure. In cases (b, f, i) we see the pronounced peaks even for the highest available scales (compare Anvari,
Lohmann, et al., 2016, Figures 2 and 6). This observation aligns with the prediction that the max{P(b,,7)} become
steeper for higher Re;, which results in a decrease of the coefficient a,(z) of Equation 15. For the remaining cases,
for the highest scales 75, we see that the PDFs are rather Gaussian (as mathematically determined for large
k — o0). Complementarily, the kinetic-scale analyses of Wan et al. (2011, 2016) demonstrate a systematic in-
crease in intermittency toward smaller scales, particularly ion- and electron-kinetic scales, indicated by increasing
kurtosis and enhanced non-Gaussian statistics. Although operating in distinct scale regimes, both sets of results
emphasize the complex and scale-dependent interplay of Gaussian and non-Gaussian behaviors inherent to
plasma turbulence. We also observe fluctuations with “jumps,” resulting in reduced smoothness in both theo-
retical and empirical curves, with smaller sample sizes exhibiting higher noise in fluctuations. Although,
agreement between theoretical model predictions and observations is significant. To quantitatively evaluate it, we
computed the Kolmogorov-Smirnov (KS) statistic between the FP solutions and observed PDFs. The KS statistics
range from 0.02 to 0.06 across cases, all below the supposed critical value of @ = 0.075 confirming statistical
agreement. Hence, these results indicate that the FP Equation 10 accurately describes the evolution of P(b,,7) on
proposed scales in all considered cases of the MSP.

For consistency, we calculate values of the symmetry parameter A for various scales and find that in all cases, it is
approximately zero within the kinetic range. This is also illustrated in Figure 6, which shows that the PDFs are
mostly symmetric about zero, and the tails have almost equal height. It suggests that the underlying energy
transfer mechanisms operate equivalently in both directions of B-field fluctuations. This testing also serves as a
minor confirmation for the reduction of the generalized Kappa distribution.

5.6. Scale Invariance

In the study of solar wind turbulence, when PDFs get rescaled by their standard deviations, they often exhibit
scale invariance, which is a sign of self-similar turbulent cascades (Benella et al., 2022; Macek et al., 2023). This
invariance typically prevails up to a characteristic times scale, beyond which the PDFs transition toward Gaussian
distributions, reflecting the dominance of large scale, less intermittent structures.
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Figure 7. Rescaled empirical PDFs (colored lines) and the stationary solutions of the FP equations using magnetic field magnitude B = |B|. We see the global scale
invariance. Data in cases (a—j) corresponding to Tables 1 and 2.

In Figure 7, we depict the PDFs of fluctuations rescaled by their standard deviations ¢(b;), that is, b, — and

P(b,,7) - o(b,) P(b,,7), which define the master curve for the shape of the PDFs (Kiyani et al., 2009). In most
cases, the curves are consistent with each other and with the stationary solutions (compare with Figure 6 open
circles), at least up to approximately 0.4 s (see also Macek & Wojcik, 2023). For the larger = values, the shapes
become more smooth and gradually approach a Gaussian. For the lowest scale, that is, 7 = 7.8 ms, we cannot
discern the regular scale invariance, although this observation aligns with the theory of the Einstein-Markov scale
Ty, below which the Markov property does not hold for the turbulent cascade, rendering it of no interest (Liick
et al., 2006). Furthermore, in cases (e, j) the strict scale invariance is not observed even within the appropriate
Markovian range. This observation is significant, as these cases include the regions of the day-side EDR
(reconnection jets). Conversely, for both night-side EDR (reconnection) regions, that is, cases (f, g), we observe
that this property is well satisfied, without any statistically significant deviations.

The slight breakdown of scale invariance in the day-side reconnection jet regions could be attributed to the
complex dynamics inherent to magnetic reconnection processes, which leads to localized heating and particle
acceleration. The contrasting behavior of day- and night-side EDRs, where electrons decouple from magnetic
field lines, seem to stem from fundamental differences in their formation and plasma environments. Day-side
reconnection occurs at the magnetopause where solar wind plasma directly interacts with the MSP, creating
stronger density gradients, greater variability in plasma parameters, and more complex current sheet geometries.
Night-side reconnection in the magnetotail occurs in a more homogeneous plasma environment with anti-parallel
B-field configurations. A few factors can contribute to the disruption of the scale invariance in day-side EDRs, for
example, localized energy dissipation, anisotropic turbulence, or some nonstationary plasma conditions. Within
the EDR, the reconnection process shows intense, localized energy conversion from magnetic to kinetic forms.
This localized dissipation introduces structures that deviate from the typical turbulent cascade, thus breaking the
expected scale invariance (Podesta & Borovsky, 2010). The reconnection process also induces anisotropies in
plasma turbulence. Presence of strong guide fields and directional energy flows can lead to anisotropic distri-
bution of turbulent fluctuations, which disrupts the self similar nature of the turbulence (Kiyani et al., 2009). In
contrast, the night-side EDRs, located in magnetotail, often exhibit more stable plasma conditions with less direct
influence from solar wind variations (Torbert et al., 2018). This relative stability allows the turbulent cascade to
maintain its self-similarity, preserving scale invariance in the PDFs of the B-field fluctuations. Anyway, it seems
that using a rescaled PDF analysis of the distinct scale invariance properties of day- and night-side reconnection
regions could be a diagnostic tool for identifying reconnection types from the B-field data. The exact mechanism
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of generation of the magnetic fluctuation at these scales is still unknown, but empirical results suggest some clear
universal characteristics of the processes.

6. Conclusions and Discussion

We have successfully extended the framework of Markovian processes to describe turbulent cascades across
diverse magnetospheric (MSP) regions using MMS mission data. Our probabilistic approach establishes a clear
distinction between multi-scale and multi-point statistics, with (N + 1)-point statistics represented by N-scale
statistics (see also Peinke et al., 2019). Through hierarchical ordering of fluctuation statistics across time scales z;,
we achieved 3-scale closure of N-scale statistics and validated Markovian properties of magnetic field fluctua-
tions for scales 7> 7gy, (Liick et al., 2006). Critically, we confirmed that the Markovian approximation depends
on scale differences (zr — 7’) rather than their magnitude (e.g., b,).

Using theory of Markov processes one can measure the differential equations describing evolution of cPDFs of
the magnetic fluctuations with no model assumptions. This enables retrieval of stochastic equation for turbulent
cascade straight from data. We have empirically evaluated the evolution equation for the cPDFs which is the
Kramers-Moyal (KM) expansion in scale, that can be approximated by 2nd order Fokker-Planck (FP) equation in
scale (or Langevin equation). The observed Markovian properties directly reflect the nature of energy transfer
between scales in plasmas in MSP. The linearity of drift coefficients indicates relatively simple deterministic
forcing mechanisms, while the quadratic diffusion coefficients suggest multiplicative stochastic processes
consistent with intermittent structures forming at small scales. Comparison of the solutions of the Fokker-Planck
equation with empirical samples supports the conclusions for the 1st and 2nd KM coefficients in scale. The
Langevin noise is present, so the nonstationary solutions of the FP equation in scale are compared with empirical
samples. We observe the varying shapes of the increment PDFs, which in a few cases are more pointy and have
broader tails, that is a characteristic of higher internal intermittency (Tutkun & Mydlarski, 2004). The findings of
observed intermittency in the MSP can be related to theoretical predictions by Mallet et al. (2016), Mallet and
Schekochihin (2016). Authors explore how Alfvénic turbulence develops significant 3-D anisotropy and inter-
mittency due to scale-dependent dynamic alignment of fluctuations and their nonlinear interactions. Our findings
qualitatively align with their core conceptual descriptions. Their theory highlights how the intermittency phe-
nomena and anisotropic scaling in plasma turbulence arise naturally from fundamental nonlinear plasma physics
processes, and show the relevance of bridging statistical descriptions of turbulence and underlying plasma
physical models. With our results, we wish to emphasize the fading boundary between the order and stochasticity
in complex systems.

We provide novel dynamic intervals of the turbulent MMS data from around 2022-2023 including the EDR
(reconnection) day- and night-side regions. These intervals can be compared with recently discovered unbiased
MMS magnetosheath campaign from February 2023 by Pecora et al. (2025), which is a crucial near-Earth space
region. Our discovered regions hold potential interest from a numerical, theoretical, and observational perspective
for analyzing the relationship between the turbulence and the magnetic reconnection (see Stawarz et al., 2024).

Our analysis advances understanding of the intrinsic sub-range of turbulence, which is a well-known yet still
unsolved physical problem. The magnetic reconnection is also important nonlinear phenomenon that remains
unresolved, being a major objective of the MMS mission. Due to its rapidity, lasting mere tenths of a second,
unprecedented time resolution is required. Thus, one should put more focus on the analysis of the turbulence in the
EDRs, initiating magnetic reconnection, especially in a day-side of the MSP. We identified a crucial asymmetry
between day-side and night-side reconnection regions: scale invariance breaks down in day-side EDRs (cases
(e, j)) due to complex reconnection dynamics, while night-side regions maintain statistical self-similarity. With
over 50 EDRs identified by MMS since 2015 (e.g., Macek et al., 2019b; Torbert et al., 2018; Webster et al., 2018,
Macek et al., 2019a), machine learning approaches (e.g., Argall et al., 2020; Breuillard et al., 2020) now enable
easier systematic investigations of these phenomena, particularly focusing on the rapid (sub-second) dynamics of
day-side reconnection processes.

Conversely, the Markovian framework has inherent limitations for describing kinetic-scale turbulence. Formally,
the analyzed stochastic processes are not purely Markovian due to the Einstein-Markov scale 7, and limited
high-resolution data sets. The 2nd order FP approximation may oversimplify real turbulent PDFs, particularly for
high-intermittency cases where higher-order Kramers-Moyal terms become significant. With increased internal
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intermittency, the tails of PDFs become longer and more influential (Tutkun & Mydlarski, 2004). Regarding the
Langevin equation, the process it models is not smooth, whereas turbulent quantities usually are, so approxi-
mating turbulent quantities will not yield exact solutions over all scales. It is related to §-correlated forcing, but if
this correlation does not occur, then the Markovianity is lost (Risken, 1996). Nevertheless, when modeling real-
world physical phenomena one always needs certain more or less strict assumptions. Despite these constraints,
this framework effectively captures essential turbulent cascade physics and internal intermittency effects in
magnetic fields across the accessible scale range.

We note that it is still interesting to expand the scale-dependent stochastic Markov framework to higher di-
mensions and consider complex turbulent magnetic and velocity fields. Here, the D™V (x,,7) coefficient turns into
a vector, while the D® (x,,7) becomes a matrix. The extension to 2-D or 3-D spaces remains an open challenge, as
the hierarchical turbulent downward cascade exhibits a clear ordering. Additionally, the future multi-spacecraft
missions (HelioSwarm, Plasma Observatory, and MagCon) and even higher temporal resolution would enable
3-D validation of the stochastic properties and cascades identified here. Recent advances in multi-spacecraft
turbulence diagnostics (Matthaeus et al., 2016; Pecora et al., 2023) could help us to extend the Markovian
framework to spatially resolved processes, provided sufficient temporal continuity, for example, through mixed
spatial-temporal Markovianity tests.
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The whole database supporting the results in this paper are available through the public MMS Science Data Center
hosted by NASA (and co-hosted by the Laboratory for Atmospheric and Space Physics (LASP), University of
Colorado, Boulder): http://cdaweb.gsfc.nasa.gov. However, to ensure reproducibility and transparency, the full
data sets used in this publication are now publicly accessible also through Zenodo. Specifically, the data are
available from (Wdjcik & Macek, 2025).

All analyses and figures were generated using a combination of programming languages: R (version 4.4.0) (R
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(The MathWorks Inc, 2025) (and the libraries therein), as specified in the relevant subsections of this paper.
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