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A B S T R A C T 

Based on the Magnetospheric Multiscale ( MMS ) mission we look at magnetic field fluctuations in the Earth’s magnetosheath. 
We apply the statistical analysis using a Fokker–Planck equation to investigate processes responsible for stochastic fluctuations 
in space plasmas. As already known, turbulence in the inertial range of hydromagnetic scales exhibits Markovian features. We 
hav e e xtended the statistical approach to much smaller scales in space, where kinetic theory should be applied. Here we study 

in detail and compare the characteristics of magnetic fluctuations behind the bow shock, inside the magnetosheath, and near 
the magnetopause. It appears that the first Kramers–Moyal coefficient is linear and the second term is a quadratic function of 
magnetic increments, which describe drift and diffusion, correspondingly, in the entire magnetosheath. This should correspond 

to a generalization of Ornstein–Uhlenbeck process. We demonstrate that the second-order approximation of the Fokker–Planck 

equation leads to non-Gaussian kappa distributions of the probability density functions. In all cases in the magnetosheath, the 
approximate power -law distrib utions are reco v ered. F or some moderate scales, we have the kappa distributions described by 

various peaked shapes with heavy tails. In particular, for large values of the kappa parameter this shape is reduced to the normal 
Gaussian distribution. It is worth noting that for smaller kinetic scales the rescaled distributions exhibit a universal global scale 
invariance , consistently with the stationary solution of the Fokker–Planck equation. These results, especially on kinetic scales, 
could be important for a better understanding of the physical mechanism go v erning turbulent systems in space and astrophysical 
plasmas. 
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 I N T RO D U C T I O N  

urbulence is a complex phenomenon that notwithstanding progress 
n (magneto)hydrodynamic simulations is still a challenge for natural 
ciences (Frisch 1995 ), and physical mechanisms responsible for 
urbulence cascade are not clear (Biskamp 2003 ). Fortunately, col- 
isionless solar wind plasmas can be considered natural laboratories 
or investigating this complex dynamical system (Bruno & Carbone 
016 ). Fluctuations of magnetic fields play an important role in 
pace plasmas, leading also to a phenomenon known as magnetic 
econnection (e.g. Burlaga 1995 ; Treumann 2009 ). 

Turbulent magnetic reconnection is a process in which energy can 
roficiently be shifted from a magnetic field to the motion of charged
articles. Therefore, this process responsible for the redistribution of 
inetic and magnetic energy in space plasmas is pivotal to the Sun,
arth, and to other planets and generally across the whole Universe. 
econnection also impedes the ef fecti veness of fusion reactors and 

egulates geospace weather that can affect contemporary technology 
uch as the Global Positioning System (GPS) navigation, modern 
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obile phone networks, including electrical power grids. Electric 
elds responsible for reconnection in the Earth’s magnetosphere have 
een observed on kinetic scales by the Magnetospheric Multiscale 
 MMS ) mission (Macek et al. 2019a , b ). Certainly, reconnection in the
agnetosphere is related to turbulence at small scales (Karimabadi 

t al. 2014 ). 
Basically, in a Markov process, given an initial probability dis- 

ribution function (PDF), the transition to the next stage can fully
e determined. It is also interesting here that we can pro v e and
emonstrate the existence of such a Markov process experimentally. 
amely, without relying on any assumptions or models for the 
nderlying stochastic process, we are able to extract the differential 
quation of this Markov process directly from the collected exper- 
mental data. Hence this Markov approach appears to be a bridge
etween the statistical and dynamical analysis of complex physical 
ystems. There is substantial evidence based on statistical analysis 
hat stochastic fluctuations e xhibit Marko v properties (Pedrizzetti & 

o viko v 1994 ; Renner, Peinke & Friedrich 2001 ). We have already
ro v ed that turbulence has Markovian features in the inertial range
f hydromagnetic scales (Strumik & Macek 2008a , b ). Admittedly,
or turbulence inside the inertial region of magnetized plasma, the 
haracteristic spectra should be close to standard Kolmogorov ( 1941 )
ower-law type with exponent −5/3 ≈ −1.67 (Kolmogorov 1941 ) 
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nd Kraichnan ( 1965 ) power-law spectrum with exponent −3/2, but
urprisingly, the absence of these classical spectra, especially on
maller scales, seems to be the rule. 

Moreo v er, we hav e also confirmed clear breakpoints in the
agnetic energy spectra in the Earth’s magnetosheath (SH), which

ccur near the ion gyrofrequencies just behind the bow shock (BS),
nside the SH, and before leaving the SH. Namely, we have observed
hat the spectrum steepens at these points to power exponents in the
inetic range from −5/2 to −11/2 for the magnetic field data of the
ighest resolution available within the MMS mission (Macek et al.
018 ). Therefore, we w ould lik e to investigate the Mark ov property
f stochastic fluctuations outside this inertial region of magnetized
lasma on small scales, when the slopes are consistent with kinetic
heory. 

It should also be noted that based on the measurements of magnetic
eld fluctuations in the Earth’s SH gathered onboard the MMS
ission, we have recently extended these statistical results to much

maller scales, where kinetic theory should be applied (Macek,
 ́ojcik & Burch 2023 ). Here we compare the characteristics of

tochastic fluctuations behind the BS, inside the SH, and near the
agnetopause (MP). In this paper, we therefore present the results

f our comparative analysis, where we check whether the solutions
f the Fokker–Planck (FP) equation are consistent with experimental
DFs in various regions of the SH. 
In Section 2 , a concise description of the MMS mission and the

nalysed data is provided, while the Section 3 outlines used stochastic
athematical and statistical methods. The vital results of our analysis

re presented in Section 4 , which demonstrates that the solutions of
he FP equation are in good agreement with empirical PDFs. Finally,
ection 5 emphasizes the significance of stochastic Markov processes

n relation to turbulence in space plasmas, which exhibit a universal
lobal scale invariance across the kinetic domain. 

 DATA  

he MMS mission, which began in 2015 March 12 and is still
n operation, delves into the connection and disconnection of the
un’s and Earth’s magnetic fields. Four spacecraft (namely MMS 1 –
MS 4 ), which carry identical instrument suites, are orbiting near the

quator to observe magnetic turbulence in progress. They are formed
nto a p yramid-lik e formation. Each satellite has an octagonal form
hat is around 3.5 m in breadth and 1.2 m in height. The satellites
otate at 3 revolutions min −1 during scientific operations. Position
ata are supplied by ultraprecise GPS apparatus, while attitude
s sustained by four stellar track ers, tw o accelerometers, and two
olar sensors. All of the spacecraft have identical instruments to
easure plasmas, magnetic and electric fields, and other particles
ith remarkably high (milliseconds) time resolution and accuracy.
his allows us to figure out if reconnection takes place in an

ndi vidual area, e verywhere within a broader area simultaneously,
r traversing through space. The MMS studies the reconnection of
he solar and terrestrial magnetic fields in both the day and night
ides of Earth’s magnetosphere, which is the only place where it can
e directly observed by spacecraft. In our previous studies, we have
bserved reconnection in the Earth’s magnetosphere involving small
inetic scales (Macek et al. 2019a , b ). 
We have further examined fluctuations of all components of the
agnetic fields B = ( B x , B y , B z ) in the Geocentric Solar Ecliptic

GSE) coordinates, with the magnitude strength B = | B | (square root
f the sum of the squares of the field components), which have been
aken from the MMS Satellite No. 1 ( MMS 1 ), located just beyond the
arth’s BS. In this way, we have shown that magnetic fluctuations
NRAS 526, 5779–5790 (2023) 
 xhibit Marko v character also on very small kinetic scales (Macek
t al. 2023 ). Moreo v er, we hav e noticed that in all components the
arkovian features are quite similar. Here, we would like to further

nvestigate statistical properties of magnetic fluctuations in various
egions of the SH. The spacecraft trajectories in the SH, in three
ifferent regions, namely 

(a) just behind the BS 

(b) deep inside the SH, and 
(c) near the MP, 

which have been shown in fig. 1 of Macek et al. ( 2018 ). 
Therefore, we would like to look at the measurements of the
agnetic field strength B = | B | , but now at various regions of the
H. To investigate SH stochastic fluctuations, now we have chosen

he same three different time intervals samples, which correspond to
able 1 of Macek et al. ( 2018 ). In cases (a) and (c) of approximately 5
nd 1.8 min respective intervals, we use burst-type observations from
he fluxgate magnetometer (FGM) sensor with the highest resolution
 � t B ) of 7.8 ms (128 samples s −1 ) with 37 856 and 13 959 data
oints, correspondingly. Ho we ver, in the other case (b), between
he BS and the MP, where only substantially lower resolution 62.5–
25 ms in surv e y mode (8–16 samples s −1 ) data are available, we
ave a much longer interval lasting 3.5 h with 198 717 data points
ith � t B = 62.5 s. All of the data are publicly available on the
ebsite: http://cda web.gsfc.nasa.go v , which is hosted by the National
eronautics and Space Administration (NASA) (Burch et al. 2016 ).
Admittedly, the gaps in time series, which commonly appear in the

ata gathered from space missions, can have a considerable impact
n the conclusions that can be derived from statistical analysis based
n experimental data. One of the powerful but simple tools used
o cope with this problem is a linear interpolation method between
oints, which we have used, if necessary, to fill these gaps in the
nalysed data sets. Therefore, in Fig. 1 on the upper side of each
ase (a)–(c) from left to right, we have depicted time series of the
agnetic field strength B = | B | . Whereas on the bottom side of each

ase, we have shown the respective power spectral density (PSD)
btained using the method proposed by Welch ( 1967 ). 
The calculated average ion and electron gyrofrequencies are as

ollows: in case (a) f ci = 0.25 Hz, and f ce = 528 Hz; case (b) f ci =
.24 Hz and f ce = 510 Hz; and case (c) f ci = 0.29 Hz and f ce =
09 Hz (Macek et al. 2018 ). In addition, employing the hypothesis
ccording to Taylor ( 1938 ), relating time and space scales in this
ay: l = � sw τ , where l is a spatial scale and � sw is the mean velocity
f the solar wind flow in the SH, we estimate characteristic inertial
requencies for ions and electrons: in case (a) f λi = 0.55 Hz and f λe =
4.5 Hz; case (b) f λi = 0.41 Hz and f λe = 18.1 Hz; and case (c) f λi =
.45 Hz and f λe = 20.1 Hz. We have marked these values on each
raph of PSD. In case (a) the obtained spectral exponent is about
2.60 ± 0.06 somewhat steeper, before the f λe = 24.5 Hz threshold

nd undoubtedly more steepen than the Kolmogorov ( 1941 ) ( −5/3)
r Kraichnan ( 1965 ) ( −3/2) slopes. 
On the other hand, outside the inertial range of scales large spectral

xponents has been reported from the Cluster multispacecraft mis-
ion (Sahraoui et al. 2009 ), the WIND data (Bruno, Trenchi & Telloni
014 ), including the proposed explanation of nature of solar wind
agnetic fluctuations on kinetic scales based on the missions (e.g.
ion, Ale xandro va & Zaslavsky 2016 ; Roberts et al. 2016 ). Owing

o unprecedented high 7.8 ms time resolution of magnetometer data
n the MMS mission available in burst mode, we also see that in
ase (a) the slope is of −2.60 ± 0.06 (close to −5/2) abo v e f λe =
4.5 Hz. This is further followed by an even steeper spectrum with
he slope of −5.59 ± 0.32 (close to −11/2 or −16/3). Because

http://cdaweb.gsfc.nasa.gov
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Figure 1. Time series of the magnetic field strength B = | B | of the MMS data with the corresponding spectra in the SH (a) near the BS, (b) inside the SH, and 
(c) near the MP plotted with three different colours. Average ion gyrofrequency ( f ci ), and a characteristic Taylor’s shifted frequencies for ions ( f λi ) and electrons 
( f λe ) are shown by the dashed, dashed–dotted, and dotted lines, respectively; see table 1 of Macek et al. ( 2018 ). 
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f a substantially lower surv e y data resolution of 62.5 ms in case
b) the spectrum with −2.24 ± 0.09 ( ≈−7/3) is steeper than the
olmogorov ( 1941 ) ( −5/3) spectrum only after the visible breakpoint

n the slope, which lies at f = 0.12 Hz, i.e. near the ion gyrofrequency
 ci = 0.24 Hz, while more gentle slope of −0.77 ± 0.06 is observed
efore this breakpoint. Finally, in case (c), similarly as in case (a)
sing BURST data, the spectral exponent of −2.75 ± 0.05 is again 
teeper before, and even more with the exponent −3.82 ± 0.06 
close to −7/2) after the observed breakpoint that lies at around 
he electron Taylor’s ( 1938 ) shifted frequency f λe = 20 Hz, as
iscussed by Macek et al. ( 2018 ). This shows that the observed
tochastic nature of fluctuations in the subion scale could be due 
o the interaction between coherent structures (Perrone et al. 2016 , 
017 ), and a very high slope of −16/3 is possibly related to the
issipation of the kinetic Alfv ́en w aves (e.g. Schek ochihin et al.
009 ). 

 M E T H O D S  O F  DATA  ANALYSIS  

s usual, we use the fluctuations of the magnetic fields B = | B | , which
escribe this turbulent system at each time t > 0. Therefore, with a
iven time-scale τ i > 0 ∀ i , one can typically define the increments
f this quantity as follows: 

 i ( t) : = B( t + τi ) − B( t) , (1) 
nd, assuming an arbitrary τ i > 0, it can be labelled as b τ or b for
implicity in the following sections. 

We assume that the fluctuations of increment b τ in a larger time-
cale τ are transferred to smaller and smaller scales. Therefore, 
tochastic fluctuations may be regarded as a stochastic process 
n scale with the N -point joint (transition) conditional probability 
ensity function denoted by P ( b 1 , τ 1 | b 2 , τ 2 , . . . , b N , τN ). In this case,
he conditional probability density function is defined by default as 

 ( b i , τi | b j , τj ) = 

P ( b i , τi ; b j , τj ) 

P ( b j , τj ) 
, (2) 

ith the marginal (unconditional) probability density function, 
 ( b j , τ j ), and the joint probability function, P ( b i , τ i ; b j , τ j ), of finding

he fluctuations b i at a scale τ i and b j at a scale τ j , for 0 < τ i < τ j . In
he same way, we may construct the conditional probability densities 
or any longer sequences of increments b . 

The stochastic process is Markovian if the conditional probability 
unction depends only on the initial values b 1 and b 2 at the time-
cales τ 1 and τ 2 , but not on b 3 at the next larger scale τ 3 , and so on,
.e. for any i = 1, . . . , N we have 

 ( b 1 , τ1 | b 2 , τ2 ) = P ( b 1 , τ1 | b 2 , τ2 , ..., b N , τN ) (3) 

or 0 < τ 1 < τ 2 < · · · < τN . Basically, the Markov process
an be determined by the initial conditional probability function 
 ( b 1 , τ 1 | b 2 , τ 2 ). Strictly speaking, the future states of the process
MNRAS 526, 5779–5790 (2023) 
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re conditionally independent of past states. Because of this relation,
he conditional probabilities are also called transition probabilities,
hile the property of equation ( 3 ) is known as a memorylessness . 
One of the generalizations of equation ( 3 ) is called the Chapman–

olmogorov (CK) condition, which is given by the equation (Risken
996 ) 

 ( b 1 , τ1 | b 2 , τ2 ) = 

∫ +∞ 

−∞ 

P ( b 1 , τ1 | b ′ , τ ′ ) P ( b ′ , τ ′ | b 2 , τ2 ) d b 
′ (4) 

or τ 1 < τ
′ 
< τ 2 . This equation can be interpreted in the following

ay: the transition probability from b 2 at a time-scale τ 2 to b 1 at
 time-scale τ 1 is the same as a product of the transition probability
rom b 2 at a time-scale τ 2 to b 

′ 
at a time-scale τ

′ 
, and the transition

robability from b 
′ 

at a time-scale τ
′ 

to b 1 at a time-scale τ 1 , for
ll possible b 

′ 
s. Let us emphasize here that such a generalization

s a necessary condition for a stochastic process to be the Markov
rocess. 
Next, from the CK condition of equation ( 4 ), by using a stan-

ard series expansion, one can derive a corresponding Kramers–
o yal (KM) backw ard expansion with an infinite number of terms.
ackward expansions are equations of evolution of probability
 ( b , τ | b ′ , τ

′ 
), where we differentiate with respect to b . This

quation has the following differential form (see section 4.2 of Risken
996 ): 

∂ 

∂ τ
P ( b , τ | b ′ , τ ′ ) = 

∞ ∑ 

k= 1 

(
− ∂ 

∂ b 

)k 

D 

( k) ( b , τ ) P ( b , τ | b ′ , τ ′ ) , (5) 

here it is important to note that the differential symbol acts on
oth D 

( k ) ( b , τ ) and P ( b , τ | b ′ , τ ′ 
) coefficients. Since the solutions

f the forward and backward KM equations are equi v alent, then
ithout loss of generality, we can label it as KM e xpansion. F ormally,
 

( k ) ( b , τ ) are called KM coefficients, which in this way are defined as
he limit at τ → τ ′ of k th power of conditional moments (see Risken
996 ): 

 

( k) ( b, τ ) = 

1 

k! 
lim 

τ→ τ ′ 
1 

τ − τ ′ M 

( k) ( b, τ, τ ′ ) , (6) 

 

( k) ( b, τ, τ ′ ) = 

∫ +∞ 

−∞ 

( b ′ − b) k P ( b ′ , τ ′ | b, τ ) d b ′ . (7) 

deally, using the conditional moments M 

( k ) ( b , τ , τ
′ 
), the KM

oefficients can be evaluated, though they cannot be obtained directly
rom the analysed data. While these conditional moments can be
alculated from the empirical observations, the D 

( k ) ( b , τ ) coefficients
an only be obtained by extrapolation in the limit τ → τ ′ according to
quations ( 6 ) and ( 7 ), but these formulae cannot be applied explicitly.

One of the popular extrapolation methods for this problem is a use
f piecewise linear regression model with breakpoints. This is a type
f regression model, which allows multiple linear models to fit to
he analysed data. The crucial objective of this method is an accurate
stimation of a number of breakpoints. First, in order to estimate
he best breakpoint position, we have e v aluated e very v alue within
 specified interval and looked at the value of logarithmic trans-
ormation of the likelihood function (also known as lo g-lik elihood
unction) of each adjusted model. Naturally, the highest value of
his function provides the optimal breakpoint. Further, to select (and
stimate) the best possible number of breakpoints of the segmented
elationship, we have used the standard Akaike ( 1973 ) information
riterion (AIC) and Bayesian information criterion (BIC; Schwarz
978 ). None the less, the truly similar results are obtained when the
owest time resolution is taken. Thus, in our case, we have a simple
NRAS 526, 5779–5790 (2023) 
pproximation of the KM coefficients, which is given by 

 

( k) ( b , τ ) = 

1 

k! 

1 

�t 
M 

( k) ( b , τ, τ ′ ) , (8) 

here � t is a given lowest time resolution of the time series. It is
lso interesting to note that D 

( k ) ( b , τ ) coefficients show the same
ependence on b as M 

( k ) ( b , τ , τ
′ 
). This simplification substantially

ecreases the time required to obtain the results numerically. 
Now, in order to find the solution of equation ( 5 ), it is necessary to

etermine the number of terms of the right-hand side (RHS) of this
quation that needs to be considered. According to P a wula’s theorem,
he KM expansion of a positive transition probability P ( b , τ | b ′ , τ ′ 

)
ay end after the first or second term (e.g. Risken 1996 , section 4.3).

f it does not end after the second term, then the expansion must
ontain an infinite number of terms. On the other hand, if the second
erm is the last one, namely D 

( k ) ( b , τ ) = 0 for k ≥ 3, then the
M expansion of equation ( 5 ) leads to the following particular

ormula: 

∂ 

∂ τ
P ( b , τ | b ′ , τ ′ ) = 

[
− ∂ 

∂ b 
D 

(1) ( b , τ ) + 

∂ 2 

∂ b 2 
D 

(2) ( b , τ ) 

]
×P ( b , τ | b ′ , τ ′ ) , (9) 

ith the well-known FP operator L FP ( b, τ ) in the squared parenthesis
e.g. Risken 1996 , equations 5.1 and 5.2) go v erning the evolution
f the probability density function P ( b , τ | b ′ , τ ′ 

) and is called the
P equation (also known as a forward Kolmogorov equation). It
as been primarily used for the Brownian motion of particles, but
ow equation ( 9 ) defines a generalized Ornstein–Uhlenbeck process.
trictly speaking, this is a linear second-order partial differential
quation of a parabolic type. By solving the FP equation, it is possible
o find distribution functions from which an y av erages (e xpected
alues) of macroscopic variables can be determined by integration.
f the rele v ant time-dependent solution is provided, this equation can
e used to not only describe stationary features, but also the dynamics
f systems. 
The first term, D 

(1) ( b , τ ), and the second term, D 

(2) ( b , τ ) > 0,
etermining the FP equation ( 9 ) are responsible for the drift and
if fusion processes, respecti vely. The former process accounts for
he deterministic evolution of the stochastic process (as a function
f b and τ ). The latter process modulates the amplitude of the δ-
orrelated Gaussian noise �( τ ) (which is known as the Langevin
orce – the fluctuating force F f ( τ ) per unit mass m ), that fulfils the
ormalization conditions: 〈 � ( τ ) � ( τ

′ 
) 〉 = 2 δ( τ − τ

′ 
), where δ is a

irac delta function and 〈 �( τ ) 〉 = 0 (see Risken 1996 ). Thus, in the
qui v alent approach another complementary equation arises: 

∂ b 

∂ τ
= D 

(1) ( b, τ ) + 

√ 

D 

(2) ( b, τ ) �( τ ) , (10) 

hich is formally called the Langevin equation. Here we have used
he It ̂ o ( 1944 ) definition that is missing a spurious drift (e.g. Risken
996 , section 3.3.3), hence the drift coefficient D 

(1) occurs directly,
nlike in the Stratonovich ( 1968 ) definition. Admittedly, the It ̂ o
 1944 ) definition is more difficult to interpret and analyse, because
f the new rules for integration and differentiation that must be used.
lthough, owing to a powerful apparatus, which is the It ̂ o Lemma, it

llows us to deal with stochastic processes analytically . Anyway , here
gain, all higher KM coefficients D 

( k ) for k ≥ 3 are equal to zero. Note
hat the ne gativ e signs on the left-hand side (LHS) of equations ( 9 )
nd ( 10 ) show that the corresponding transitions proceed backward
o smaller and smaller scales. 

Next, because the differentiating in the FP operator in equa-
ion ( 9 ) should act on both the KM coefficients and the conditional
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robability density P ( b , τ | b ′ , τ ′ 
) by performing relatively simple

ransformations, it can be rewritten in the following expanded form 

equation 45.3a of Risken 1996 ): 

− ∂ 

∂ τ
P ( b , τ | b ′ , τ ′ ) = D 

(2) ( b , τ | b ′ , τ ′ ) 
∂ 2 

∂ b 2 
P ( b , τ | b ′ , τ ′ ) 

+ 

[
2 
∂ 

∂ b 
D 

(2) ( b , τ | b ′ , τ ′ ) − D 

(1) ( b , τ | b ′ , τ ′ ) 
]
∂ 

∂ b 
P ( b , τ | b ′ , τ ′ ) 

+ 

[
∂ 2 

∂ b 2 
D 

(2) ( b , τ | b ′ , τ ′ ) − ∂ 

∂ b 
D 

(1) ( b , τ ) 

]
P ( b , τ | b ′ , τ ′ ) . (11) 

ormally, equation ( 11 ) resulting from the FP equation ( 9 ) is the
econd-order parabolic partial differential equation. 

It is also worth mentioning that this equation is the generalization 
f the case of thermal conducti vity dif fusion equation, which can
e solved with the initial and boundary conditions P ( b , τ = 0 | b ′ ,
′ = 0) = p ( b , b 

′ 
) and P ( b = 0, τ | b ′ = 0, τ

′ 
) = 0, respectively,

sing the method of separation of variables. The solution of non- 
tationary FP equation ( 11 ) can well be approximated numerically, 
.e. by the difference method. The master curve for the probability 
ensity function P ( b , τ ) of equation ( 11 ) can readily be e v aluated by
he stationary solution p s ( b , τ ) of equation ( 9 ), which is given by 

∂ 

∂ b 

[ 
D 

(2) ( b , τ ) p s ( b , τ ) 
] 

= D 

(1) ( b , τ ) p s ( b , τ ) (12) 

hat results from comparing the LHS of equation ( 9 ) with zero. 

 RESULTS  

n order to inspect processes responsible for stochastic fluctuations 
n space plasma, we have applied the methods described in Section 3
o small scale in cases (a) and (c) and medium scale in case (b)
uctuations of the magnetic field B = | B | in the Earth’s SH. In
eneral, the approach presented in this paper could be applied under 
 few important conditions that should be tested as preliminary 
rocedures (see Rinn et al. 2016 ). The first condition is that time
eries data must be stationary. If they were non-stationary, then 
he conditional moments given by equation ( 7 ) are not essentially

eaningful. The second condition is that the process should be 
arkovian, i.e. the present state should only depend on the preceding 

tate. The third condition is that the P a wula’s theorem must hold, as
iscussed in Section 3 . 
Having this in mind, we have started with the brief analysis and

escription of the rele v ant time series and the corresponding graphs
f power spectral densities. Next, we have checked stationarity of all 
nalysed time series (see e.g. Macek 1998 ). To show that a Markov
rocesses approach is suitable in our situation, we have moved 
orward to the verification of the necessary CK condition, through 
stimation of the KM coefficients, and then have checked the validity 
f the P a wula’s theorem. This lets us to apply the reduced formula
f the FP equation ( 9 ), which describes evolution of the probability
ensity function P ( b , τ ). 
Following our initial discussion, we must now verify whether the 

ata time series under study is stationary . Generally , if a time series
xhibits no trend, has a constant variance over time, and a consistent
utocorrelation function o v er time, then it is classified as stationary.
uch time series are also much easier to model. There are a variety of
ays to e v aluate this feature of any time series. One of such method

s the augmented Dickey & Fuller ( 1979 ) test. This test uses the
ollowing null and alternative hypotheses: H 0 : the time series is non-
tationary, versus H 1 : the time series is stationary. When the p -value
s less than 0.05, then the null hypothesis can be rejected and it can be
oncluded that the time series is stationary. In fact, after performing
uch a statistical test, we have determined that in cases (a) and (b),
he respecti ve p -v alues are < 0.01, indicating that the null hypothesis
an be rejected. Thus, these magnetic field strength B = | B | time
eries are stationary. Ho we ver, in case (c), where a much smaller
ata sample is available, the p -value is equal to 0.154, hence we have
ailed to reject the null hypothesis. The result suggests that the time
eries is non-stationary and has some time-dependent structure with 
 arying v ariance o v er time. 
Once again, there are various methods of eliminating trends and 

easonality, which define non-stationary time series. Trends can 
ause the mean to fluctuate o v er time, while seasonality can lead to
hanges in the variance o v er time. The most straightforward approach
o address this issue is the differencing technique, a common and
requently used data transformation that is applied for making time 
eries data stationary. Differencing is achieved by subtracting the 
re vious observ ation from the current one. Follo wing notation in
quation ( 1 ), this can simply be written as b ( t ) = B ( t ) − B ( t − 1). To
everse this process, the prior time-step’s observation must be added 
o the dif ference v alue. The practice of computing the difference
etween successive observations is referred to as a lag-1 difference. 
he number of times that differencing is carried out is referred to as

he order of differentiation. Fortunately, in our case (c), applying the
ag-1 (order 1) difference operation has been sufficient to get rid
f non-stationarity. The augmented Dickey & Fuller ( 1979 ) test has
ielded a p -value of less than 0.01, thus the null hypothesis could be
ejected, indicating that the analysed B = | B | time series is stationary.

We have used one of the exploratory data analysis approaches 
alled unsupervised binning method (compare with normalized 
istogram method) to make bins (histogram’s boxes) and to obtain the
mpirical conditional probability density functions P ( b 1 , τ 1 | b 2 , τ 2 )
or 0 < τ 1 < τ 2 directly from the analysed data. First, we have
stimated the empirical joint PDF P ( b 1 , τ 1 ; b 2 , τ 2 ) by counting
he number of different pairs ( b 1 , b 2 ) on a two-dimensional grid of
qual width data bins (small intervals). This bins integer should be
either too large, such that each bin no longer contains a significant
uantity of points, nor too small, such that any dependency of the drift
nd diffusion coefficients on the state variable cannot be detected. 
e xt, we hav e performed the normalization such that the inte gral
 v er all bins is equal to 1 (note that the sum will not be equal to
 unless bins of unity width are chosen). Similarly, the empirical
ne-dimensional PDF P ( b 2 , τ 2 ) can be estimated with the use of a
ne-dimensional grid of bins (and carrying out the normalization), 
nd the empirical conditional PDFs are obtained using equation ( 2 )
irectly (in a numerical sense). 
In such a way, we have found the empirical conditional probability

ensity functions from the analysed data, which are shown by red
ontinuous contours in Fig. 2 . They are compared here with the
heoretical conditional PDFs that are solutions of the CK condition 
f equation ( 4 ) displayed by blue dashed contours, which are
wo-dimensional representation of three-dimensional data. Such a 
omparison is seen in Fig. 2 for the magnetic field increments b , at
he various scales: in cases (a) and (c) τ 1 = 0.02 s, τ

′ = τ 1 + � t B =
.0278 s, τ 2 = τ 1 + 2 � t B = 0.0356 s, where � t B = 0.0078 s, and in
ase (b) τ 1 = 0.2 s, τ

′ = τ 1 + � t B = 0.2625 s, τ 2 = τ 1 + 2 � t B =
.325 s, where � t B = 0.0625 s. The depicted subsequent isolines
orrespond to the following decreasing levels of the conditional 
DFs, from the middle of the plots, for following magnetic field

ncrements b : case (a) 2, 1.1, 0.5, 0.3, 0.05, 0.01; case (b) 5, 1,
.7, 0.45, 0.3, 0.22, 0.15, 0.1, 0.05; and case (c) 7, 3.3, 1.3, 0.3,
.08, 0.06. This is rather evident that the contour lines corresponding
o these two empirical and theoretical probability distributions are 
MNRAS 526, 5779–5790 (2023) 
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M

Figure 2. Comparison of observed contours (red solid curves) of conditional probabilities at various time-scales τ , with reconstructed contours (blue dashed 
curves) according to the Chapman–Kolmogorov (CK) condition, recovered by the use of MMS magnetic field total magnitude B = | B | in the SH: (a) just behind 
the BS, (b) inside the SH, and (c) near the MP, corresponding to the spectra in Fig. 1 . 
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early matching for all three cases. Thus, it appears that the CK
ondition of equation ( 4 ) is sufficiently well satisfied. 

Next, in the corresponding Fig. 3 , we have verified again the
K condition of equation ( 4 ). Intuitively speaking (and somehow

nformally), what we see in Fig. 2 is just a view ‘from the top’ of
he three-dimensional shape, while in Fig. 3 the orthogonal cuts
re depicted. Again, we have compared these cuts through the
onditional probability density functions for particular chosen values
f parameter b 2 , which can be seen at the top of each plot. As is
vident, the cuts through the empirical probability density functions
oincide rather well with the cuts through the theoretical probability
ensity functions, providing good fits in all of the analysed cases.
dmittedly, only in case (b) for b 2 = 0 [nT] the cuts points deviate

rom the lines in tails, but it seems to be caused by the data outliers,
hich can eventually be further eliminated. It is necessary to mention

hat after such a comparison for dif ferent v alues of ( τ 1 , τ
′ 
, τ 2 ), we

ave found that the CK condition of equation ( 4 ) is satisfied for
 up to a scale of approximately 100 � t B = 0.78 s in case (a), to
bout 150 � t B = 9.375 s in case (b), and around 40 � t B = 0.312 s in
ase (c), thus indicating that the stochastic fluctuations have Markov
roperties. 
To verify Pawula’s theorem, which states that if the fourth-order

oefficient is equal to zero, then D 

( k ) ( b , τ ) = 0, k ≥ 3, it is necessary
o estimate the D 

(1) ( b , τ ), D 

(2) ( b , τ ), and D 

(4) ( b , τ ) coefficients using
ur experimental data. The standard procedure for calculating these
alues is to use an extrapolation method such as a piecewise linear
egression to estimate the respective limits in equation ( 6 ). Ho we ver,
s already mentioned in Section 3 , the similar results are obtained
y simplifying the problem of finding these coefficients, by using
quation ( 8 ), which enables us to estimate these values using the
dequately scaled M 

( k ) ( b , τ , τ
′ 
) coefficients. In our situation, the time

esolution � t B is equal to 7.8 ms in cases (a) and (c), while in case (b)
t is 62.5 ms. Thus, given the conditional probabilities P ( b 1 , τ 1 | b 2 , τ 2 )
or 0 < τ 1 < τ 2 , we have calculated these central moments directly
rom equation ( 7 ), using the obtained empirical data by counting
he numbers N ( b 

′ 
, b ) of occurrences of two fluctuations b 

′ 
and b .

iven that the errors of N ( b 
′ 
, b ) might be simply determined by

 

N ( b ′ , b) , then, in a similar way, it is possible to calculate the
rrors for the conditional moments M 

( k ) ( b , τ , τ
′ 
). Consequently,

caling these values according to equation ( 8 ), we have obtained
NRAS 526, 5779–5790 (2023) 

t  
he empirical KM coefficients. By examination of the M 

( k ) ( b , τ , τ
′ 
)

nd D 

( k ) ( b , τ ) coefficients, we can observe that they both exhibit the
ame dependence on b . 

The results of this analysis are shown in Fig. 4 , where on the
pper part we have depicted the first-order coefficient depending
n b , while at the bottom we have shown the second- and fourth-
rder coefficients depending on b , for all three cases (a), (b), and (c).
oreo v er, for each case, we hav e pro vided the calculated confidence

ntervals (error bars). It is demonstrated that the fit for D 

(1) ( b , τ )
oefficient is a linear function of b and for D 

(2) ( b , τ ) is a quadratic
unction of b , for � t B = 0.0078 s in cases (a) and (c), and � t B =
.0625 s in case (b). In fact, we have checked that the same fits
re reasonable up to even 150 � t B for all three analysed cases. This
eans that in this instance, there should be no difficulties with fitting

he polynomials for different � t B . 
As seen at the bottom part of Fig. 4 of cases (a) and (c), it is

vident that the P a wula’s theorem is clearly satisfied. On the other
and, in case (b) it might be not so ob vious. F or instance, for b ≈
6.2 nT, we can see that the value of D 

(4) ( b , τ ) is somewhat greater
han zero. In this case, we can use the somewhat weaker version of
his theorem, which states that it is sufficient to check if D 

(4) ( b , τ )
[ D 

(2) ( b , τ )] 2 , for all b (see Risken 1996 ; Rinn et al. 2016 ). Thus,
n this situation, we have [ D 

(2) ( b , τ )] 2 ≈ 1225, which is significantly
arger than D 

(4) ( b , τ ) ≈ 1, for b ≈ −6.2 nT. Therefore, it is reasonable
o conclude that the P a wula’s theorem is sufficiently well fulfiled in
ll of the analysed cases. Hence we can assume that the Markov
rocess is described by the FP equation ( 9 ). 
In order to find the analytical solution of the FP equation ( 9 ),

e have proposed certain approximations of the lowest order KM
oef ficients. As pre viously discussed (see Fig. 4 ), it is straightforward
hat D 

(1) ( b , τ ) exhibits a linear dependence, whereas D 

(2) ( b , τ )
isplays a quadratic dependence on b . Consequently, it is reasonable
o assume the following parametrization: 

{ 

D 

(1) ( b, τ ) = −a 1 ( τ ) b, 

D 

(2) ( b, τ ) = a 2 ( τ ) + b 2 ( τ ) b 2 , 
(13) 

here the rele v ant parameters a 1 > 0, a 2 > 0, and b 2 > 0 depend on
emporal scale τ > 0. Moreo v er, it appears that all of these parameters
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Figure 3. Comparison of cuts through P ( b 1 , τ 1 | b 2 , τ 2 ) for the fixed value of the strength of the magnetic field total magnitude B = | B | in the SH: (a) just 
behind the BS, (b) inside the SH, and (c) near the MP, with increments b 2 with τ 1 = 0.02 s, τ

′ = 0.0278 s, and τ 2 = 0.0356 s in cases (a) and (c), and with τ 1 

= 0.2 s, τ
′ = 0.2625 s, and τ 2 = 0.325 s in case (b). 
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xhibit a power-law dependence on temporal scale τ : ⎧ ⎪ ⎨ 

⎪ ⎩ 

a 1 ( τ ) = Aτα, 

a 2 ( τ ) = Bτβ, 

b 2 ( τ ) = Cτγ , 

(14) 

here the values for all of the logarithmized parameters A, B, C ∈ R
nd the α, β, γ ∈ R are given in Table 1 . 
It is important to emphasize that the functional dependencies of 
he coefficients a 1 ( τ ), a 2 ( τ ), and b 2 ( τ ) on τ given by equation ( 14 )
re merely parametrizations of the empirical results. In fact, here 
ower la ws hav e been selected, because the y hav e adequately
escribed the observed values with sufficient accurac y. Nev ertheless, 
ome alternative theoretical analyses may lead to slightly different 
unctional dependence (see Renner et al. 2001 ). Admittedly, it turned
ut that the values of the fitted parameters can slightly be different
MNRAS 526, 5779–5790 (2023) 
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Figure 4. The first and second limited-size Kramers–Moyal (KM) coefficients determined by the magnetic field increments b for a total strength of magnetic 
field B = | B | in the SH: (a) just behind the BS, (b) inside the SH, and (c) near the MP. The dashed red lines show the best choice fits to the calculated values of 
D 

(1) ( b , τ ) and D 

(2) ( b , τ ) with D 

(4) ( b , τ ) = 0, according to the P a wula’s theorem. 

Table 1. The fitted parameters for power-law dependence of first- and second-order Kramers–Moyal (KM) coefficients of equations ( 13 ) and ( 14 ) as functions 
of scale τ . 

Case log 10 ( A ) α log 10 ( B ) β log 10 ( C ) γ

(a) 0.6989 ± 0.0225 −1.1191 ± 0.0089 −0.4946 ± 0.1259 1.1631 ± 0.0498 0.5854 ± 0.0706 −1.7325 ± 0.0279 
(b) 0.1837 ± 0.0139 −1.0417 ± 0.0100 −0.4666 ± 0.0160 0.5425 ± 0.0116 0.4183 ± 0.0163 −1.2233 ± 0.0118 
(c) 0.7791 ± 0.0079 −1.1055 ± 0.0057 −0.5893 ± 0.0126 1.0002 ± 0.0091 0.5011 ± 0.0274 −1.7646 ± 0.0199 
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rom those that fit exactly the solution of the FP equation ( 9 ). Renner
t al. ( 2001 ) have also highlighted the asymmetry of the fit D 

(2) ( b ,
) on b , which is also present in our analysis [especially in case (c),
nd to a lesser degree in case (a)]. 

The obtained fits to the MMS observations in the SH are depicted
n Fig. 5 , for each case (a), (b), and (c), showing the dependence
f KM coefficients parameters on scale τ > 0. Since our data
ontain a multitude of relatively low values and a few exceedingly
arge values, which would render a linear graph rather unreadable,
nstead of using a standard linear graph, we have decided to employ
ogarithmic scales for both the vertical and horizontal axes (so-
alled log –log plot). Such a procedure is rather straightforward.
 or e xample, for the first row of equation ( 14 ), taking the logarithm
f both sides one obtains log ( a 1 ( τ )) = α log ( τ ) + log ( A ), which is a
pecial case of a linear function, with the exponent α corresponding
o the slope of the line. The value of log ( A ) corresponds to the
ntercept of a log ( a 1 ( τ )) axis, while the log ( τ ) axis is intercepted at
og A /( −α). We have opted for this approach to enhance the clarity of
he presentation. Therefore, since we have used both the logarithmic
cales the respective power laws appear as straight lines in Fig. 5 .
imilarly, the graphical representations for all the parameters a 1 ,
NRAS 526, 5779–5790 (2023) 
 1 , and b 2 of equations ( 13 ) and ( 14 ), which we have provided,
re helpful for identifying correlations and determining respective
onstants A , B , C and α < 0, β > 0, γ < 0 in Table 1 (cf. Macek
t al. 2023 ). 

After performing a careful analysis of the MMS magnetic field
agnitude B data, our findings indicate that the power-law de-

endence is applicable for the values of: τ � 100 � t B = 0.78 s
n case (a); τ � 150 � t B = 9.375 s in case (b); τ � 50 � t B =
.39 s in case (c), and for some larger scales, say τ � τG , the
hapes of the probability density functions appear to be closer
o Gaussian. Ho we ver, despite the satisfactory results obtained
t these small kinetic scales, a more intricate functional depen-
ence (possibly polynomial fits) is characteristic for much higher
cales, in particular, in the inertial domain (Strumik & Macek
008a , b ). 
As a result of our investigations, we are able to obtain analytical

tationary solutions p s ( x ) given by equation ( 12 ) following from
he FP equation ( 9 ), which can be expressed by a continuous
appa distribution (also known as Pearson’s type VII distribution),
hich exhibits a deviation from the normal Gaussian distribution.
he probability density function of this distribution is of a given
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Figure 5. Linear dependence of the parameters a 1 , a 2 , b 2 (see equation 14 ) on the double logarithmic scale τ (log–log plot), for the magnetic field o v erall 
intensity B = | B | in the SH: (a) just behind the BS, (b) inside the SH, and (c) near the MP. The dashed red lines, with the standard error of the estimate illustrated 
by grey shade, show the best choice fits to the calculated values. 
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orm 

 s ( b) = 

N 0 [
1 + 

1 
κ

(
b 
b 0 

)2 
]κ , (15) 

here, for a 2 ( τ ) 
= 0, b 0 ( τ ) 
= 0, we have a shape parameter κ = 1 +
 1 ( τ )/[2 b 2 ( τ )] and b 2 0 = a 2 ( τ ) / [ b 2 ( τ ) + a 1 ( τ ) / 2], while N 0 = p s (0)
atisfies the normalization 

∫ ∞ 

−∞ 

p s ( b) d b = 1. By substituting p s ( b )
o this integral we find that 

 0 = 

�( κ) 

� 

(
κ − 1 

2 

)
b 0 

√ 

πκ
, (16) 

here, this time, �( κ) = 

∫ ∞ 

0 b κ−1 e −b d b, Re( κ) > 0 is a mathemat-
cal gamma function (Euler integral of the second kind), as defined 
or all complex numbers with a positive real part. 

It is worth noting that kappa distribution, as represented by equa- 
ion ( 15 ), approaches the normal Gaussian (Maxwellian) distribution 
or large values of scaling parameter κ . To be precise, as κ → ∞ ,
he following well-known formula can approximately be satisfied: 

lim 

κ→∞ 

p s ( b) = N 0 exp 
(
− b 2 

2 σ 2 

)
, (17) 

ith the scaling parameter b 0 related to the standard deviation σ =
 0 / 

√ 

2 . This time the parameter N 0 = p s (0) satisfies the elementary
ormalization N 0 = 

1 
σ
√ 

2 π
. 

The numerical results of fitting the empirical MMS data to 
he given distributions and determining the rele v ant parameters of
quation ( 15 ) are as follows: κ = 1.5179, b 0 = 1.9745, and N 0 =
.68438 for B in case (a); κ = 1.3758, b 0 = 2.6955, and N 0 = 0.34375
n case (b); and κ = 3.5215, b 0 = 1.7313, and N 0 = 1.1866 in case (c).
hese values of κ would correspond to the non-extensivity parameter 
f the generalized (Tsallis) entropy q = 1 − 1/ κ (e.g. Burlaga &
i ̃ nas 2005 ). In our case this is given by q = 

a 1 ( τ ) 
a 1 ( τ ) + 2 b 2 ( τ ) and is equal

o 0.341 in case (a), 0.273 in case (b), and 0.716 in case (c). The
xtracted values of the κ and q parameters provide robust measures 
f the departure of the system from equilibrium. We see that these
MNRAS 526, 5779–5790 (2023) 
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M

Figure 6. The empirical probability density functions (various continuous coloured lines) for a total strength of magnetic field B = | B | , which correspond to 
spectra in Fig. 1 , compared with the non-stationary (dashed lines) and the stationary (open circles) solutions of the FP equation, for various time-scales (shifted 
from bottom to top) τ = 0.0078, 0.04, 0.078, 0.12, 0.2, 0.39, and 0.78 s in cases (a) and (c), and τ = 0.0625, 0.3125, 0.625, 0.9375, 1.5625, 3.125, and 9.375 s 
in case (b). 
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alues are similar to q ∼ 0.5 for κ ∼ 2 reported for the Parker Solar
robe ( PSP ) data by Benella et al. ( 2022 ). 
Now, by using the system of equation ( 13 ) with equation ( 9 ), we

av e arriv ed at the following formula (Macek et al. 2023 ): 

(
a 2 ( τ ) + b 2 ( τ ) b 2 

)∂ 2 P ( b, τ ) 

∂ b 2 
+ 

(
a 1 ( τ ) + 4 b 2 ( τ ) 

)
b 
∂ P ( b, τ ) 

∂ b 

+ 

∂ P ( b, τ ) 

∂ τ
+ 

(
a 1 ( τ ) + 2 b 2 ( τ ) 

)
P ( b, τ ) = 0 . (18) 

his implies that the FP equations ( 11 ) and ( 18 ) are expressed
n terms of a second-order parabolic partial differential equation.
hus, through the implementation of the numerical Euler integration
cheme, which has been verified for stationary solution ∂ P ( b,τ ) 

∂ τ
= 0,

e are able to successfully solve the non-stationary FP equation nu-
erically. Our results are in line with those obtained by Rinn

t al. ( 2016 ) using the statistical modelling package in programming
anguage R . 

Fig. 6 shows the findings resulting from our analysis based on the
MS data. Here we compare the solutions of the FP equation ( 9 )
ith the empirical probability density functions of P ( b , τ ): (a) near

he BS; (b) inside the SH; and (c) near the MP for various scales τ
not greater than τG ). The displayed plotted curves, in each case, are
s follows: the stationary solution (denoted by open circles); the non-
tationary solutions (marked with dashed lines); and the empirical
DFs (indicated with various coloured continuous lines). 
Further, in cases (a) and (c) the corresponding time scales are τ =

.0078, 0.04, 0.078, 0.12, 0.2, 0.39, and 0.78 s, whereas in case (b)
hese scales are τ = 0.0625, 0.3125, 0.625, 0.9375, 1.5625, 3.125,
nd 9.375 s. The corresponding curves are shifted in the vertical
irection from bottom to top for even better clarity of presentation.
t is also worth noting that we have used the semi-logarithmic scale
, what is useful when dealing with data that co v ers a broad range
f values. On this scale, the vertical scale is logarithmic (base 10)
NRAS 526, 5779–5790 (2023) 
xis, which means that the separation between the ticks on the graph
s proportional to the logarithm of PDF, while the horizontal b -axis
s a standard linear scale, and the ticks are evenly spaced. 

What is important to note from this picture are the peaked
eptokurtic shapes of PDFs and corresponding stationary solutions.
amely, in case (a) the peak (with large kurtosis) is present for scales
p to ∼0.5 s; in case (b) up to about ∼3 s; and in case (c) up to ∼0.25 s.
or these levels selected for each case the PDF becomes closer to
aussian (i.e. approximately parabolic shape on the graph with the

emi-logarithmic scales), as expected for large values of κ . In case
c) we can see more jumps in fluctuations, i.e. the curves are not so
mooth. Fluctuations are quite evident in both the empirical curves
nd the theoretical solutions, so it seems that some numerical noise
s present in the tails of the PDFs. Admittedly, reducing noise is a
ricky issue, although the easiest way is to artificially smooth using
he simple moving average. Therefore, we have tried this procedure
or n = 1, 2, 3 steps and it has appeared that the n = 3 choice is
ufficient. 

Fig. 7 depicts finally the probability density functions of fluctua-
ions of the strength of the magnetic field b τ rescaled by the standard
eviations σ ( b τ ) in the following way: 

 τ −→ 

b τ

σ ( b τ ) 
, (19) 

DF ( b τ ) −→ σ ( b τ ) PDF ( b τ ) . (20) 

n this way, we can define a master curve for the shape of the
DFs. Again, we have used the logarithmic scale on the vertical
xis. We also see that the rescaled curves are consistent with the
tationary solutions of equation ( 15 ), as marked with open circles
n Fig. 6 . It should be noted that all the curves in Fig. 7 are very
lose to each other for small scales. Ho we ver, for larger τ = 50 or
00 � t B these shapes deviate from the master curve and naturally
end to the well-known Gaussian shape. We see that the shape of the
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DFs obtained from the MMS data exhibits a global scale invariance 
n the SH up to scales of ∼2 s. A similar collapse has also been
eported with the PSP data at subproton scales (Benella et al. 2022 ).
ig. 7 shows that fluctuations in the SH are described by a stochastic
rocess. Admittedly, the mechanism of generation of these magnetic 
uctuation at small kinetic scale is not known, but the results suggest
ome universal characteristics of the processes. An alternative point 
f view has recently been proposed by Carbone et al. ( 2022 ). 

 C O N C L U S I O N S  

ollowing our studies in the space plasmas at large inertial scales 
Strumik & Macek 2008a , b ), we have examined time series of the
trength of magnetic fields in different regions of the Earth’s SH, 
here the spectrum steepens at subproton scales (Macek et al. 2018 ).
ith the highest resolution available on the MMS , the data samples

ust after the BS and near the MP are stationary and for somewhat
ower resolution deep inside the SH the deviations from stationarity 
re small and could well be eliminated. Basically, in all these cases the 
tochastic fluctuations exhibit Markovian features. We have verified 
hat the necessary CK condition is well satisfied, and the probability 
ensity functions are consistent with the solutions of this condition. 
In addition, the P a wula’s theorem is also well satisfied resulting

n the FP equation reduced to drift and diffusion terms. Hence, this
orresponds to the generalization of Ornstein–Uhlenbeck process. 
urther, the lowest KM coefficients have linear and quadratic 
ependence as functions of the magnetic field increments. In this 
ay, the power-law distributions are well reco v ered throughout the 

ntire SH. For some moderate scales we have the kappa distributions
escribed by various peaked shapes with heavy tails. In particular, for
arge values of the kappa parameter these distributions are reduced 
o the normal Gaussian distribution. 

Similarly as for the PSP data, the probability density functions 
f the magnetic fields measured onboard the MMS rescaled by the 
especti ve standard de viations exhibit a uni versal global scale invari-
nce on kinetic scales, which is consistent with the stationary solution 
f the FP equation. We hope that all these results, especially those
eported at small scales, are important for a better understanding of
he physical mechanism go v erning turbulent systems in space and
aboratory. 
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