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Analysis of Markov Processes in Space Environment 

Dariusz Andrzej Wójcik 
 
Abstract. 
This doctoral thesis consists of a series of monothematic papers devoted to modern mathematical theory 
applied to stochastic processes in space plasmas. In a Markov process, given an initial probability density 
function, the transition to the next stage can be fully determined. Hence, this approach can be considered 
a bridge between the statistical and dynamical analysis of complex systems. As is already known, solar 
wind turbulence on large magnetohydrodynamic scales exhibits Markovian features. Therefore, in our 
studies we have shown that stochastic fluctuations of the magnetic fields measured onboard the NASA 
Magnetospheric Multiscale (MMS) mission on much smaller kinetic scales can also be described by 
Markov processes [1].  Next, we have analyzed the magnetic MMS data behind the Earth’s bow shock, 
inside the magnetosheath, and near the magnetopause [2]. Furthermore, we have compared magnetic and 
velocity fluctuations in all these different regions of circumterrestrial plasma [3]. We have proved that 
the Chapman-Kolmogorov necessary condition for Markov processes is well satisfied in magnetosheath 
plasma. In particular, we have shown that for stochastic magnetic fluctuations the Kramers-Moyal 
expansion stops after the first and second terms, describing drift and diffusion, respectively.  These 
lowest-order Kramers-Moyal coefficients are linear and quadratic functions of magnetic increments, 
consistent with generalized Ornstein-Uhlenbeck processes. In the case of magnetic fluctuations these 
coefficients are well fitted to power-law dependence on scales. The numerical solutions of the reduced 
second order Fokker-Planck equation agree with the experimental probability density functions. For the 
smallest available scales, we have obtained very peaked density functions (well approximated by the 
Dirac delta function), while for some moderate scales we have recovered the Kappa distributions 
resulting from stationary solutions of the Fokker-Planck equation. These distributions are described by 
various peaked leptokurtic shapes with heavy tails, which, for large values of the kappa parameter, reduce 
to the normal Gaussian distribution. The kappa parameter and the nonextensivity parameter in Tsallis 
entropy provide robust measures of the system’s departure from equilibrium. It is worth noting that the 
rescaled distributions exhibit a universal global scale-invariance. On the other hand, for velocity 
fluctuations, higher-order Kramers-Moyal coefficients should be taken into account, with a more 
complicated functional dependence on the increments of velocity. Admittedly, in this case, we observe 
more complicated probability density functions. However, we hope that our research results on stochastic 
fluctuations in space plasma, especially those obtained from the analysis of magnetic fluctuations, will 
be important for a better understanding of the processes governing turbulent systems in nature.   
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Analiza procesów Markowa w środowisku kosmicznym 

Dariusz Andrzej Wójcik 

Streszczenie. 
Niniejsza rozprawa doktorska składa się z serii monotematycznych publikacji poświęconych 
współczesnej teorii matematycznej stosowanej do procesów stochastycznych w plazmie 
kosmicznej. W procesie Markowa, przy danej początkowej funkcji gęstości prawdopodobieństwa, 
przejście do kolejnego stanu jest w pełni deterministyczne. Zatem podejście to można uznać za 
pomost między analizą statystyczną a dynamiką złożonych układów. Jak już wiadomo, turbulencja 
wiatru słonecznego na dużych skalach magnetohydrodynamicznych wykazuje właściwości 
markowskie. W naszych badaniach wykazaliśmy, że fluktuacje stochastyczne pól magnetycznych, 
mierzonych przez przyrządy na pokładzie misji kosmicznych NASA Magnetospheric Multiscale 
(MMS) na znacznie mniejszych skalach kinetycznych, również można opisać za pomocą procesów 
Markowa [1]. Następnie przeanalizowaliśmy dane magnetyczne z misji MMS w obszarze za 
czołem fali uderzeniowej Ziemi, wewnątrz osłony magnetosfery i w pobliżu magnetopauzy [2]. 
Ponadto porównaliśmy fluktuacje pól magnetycznych i prędkości w tych różnych obszarach 
plazmy okołoziemskiej [3]. Udowodniliśmy, że w plazmie osłony magnetosfery warunek 
Chapmana-Kołmogorowa konieczny dla procesów Markowa jest dobrze spełniony. W 
szczególności, wykazaliśmy, że dla stochastycznych fluktuacji pola magnetycznego rozwinięcie 
Kramersa-Moyala kończy się na pierwszym i drugim wyrażeniu, które opisują odpowiednio dryf 
i dyfuzję. Współczynniki Kramersa-Moyala najniższego rzędu są liniowymi i kwadratowymi 
funkcjami zmian pola magnetycznego, co jest zgodne z uogólnionymi procesami Ornsteina-
Uhlenbecka. W przypadku fluktuacji magnetycznych współczynniki te dobrze dopasowują się do 
zależności prawa potęgowego względem skali. Numeryczne rozwiązania zredukowanego 
równania Fokkera-Plancka drugiego rzędu są zgodne z eksperymentalnymi funkcjami gęstości 
prawdopodobieństwa.  Na najmniejszych dostępnych skalach uzyskaliśmy bardzo ostro 
„wypikowane” funkcje gęstości (dobrze przybliżone przez funkcją delta Diraca), natomiast dla 
pewnych umiarkowanych skal otrzymaliśmy rozkłady kappa wynikające ze stacjonarnych 
rozwiązań równania Fokkera-Plancka. Rozkłady te są opisane różnymi kształtami 
leptokurtycznymi z powiększonymi ogonami, które dla dużych wartości parametru kappa 
przechodzą w standardowy rozkład Gaussa. Parametr kappa oraz parametr nieekstensywności w 
entropii Tsallisa stanowią wiarygodne miary odchylenia układu od równowagi. Warto zauważyć, 
że przeskalowane rozkłady wykazują uniwersalną globalną niezmienniczość na skalach 
kinetycznych. Z drugiej strony, dla fluktuacji prędkości konieczne jest uwzględnienie wyższych 
rzędów współczynników Kramersa-Moyala, które wykazują bardziej skomplikowaną zależność 
funkcyjną od przyrostów prędkości. W tym przypadku obserwujemy bardziej złożone funkcje 
gęstości prawdopodobieństwa. Niemniej jednak mamy nadzieję, że nasze wyniki badań nad 
fluktuacjami stochastycznymi w plazmie kosmicznej, zwłaszcza te dotyczące analizy fluktuacji 
magnetycznych, będą istotne dla lepszego zrozumienia procesów rządzących turbulentnymi 
układami w przyrodzie. 
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Analysis of Markov Processes in Space Environment 
Introduction and Synthetic Summary of the Results 

 

Main doctoral thesis: Turbulence in the Earth’s magnetosheath exhibits Markovian 
character on kinetic scales [1,2,3]. 

 

Turbulence in space plasmas remains a fundamental and unresolved issue in physical research, 
particularly in the context of the solar wind and magnetospheric environments. The interplay of 
magnetic and velocity fluctuations in collisionless plasmas governs energy transfer across scales, 
from large magnetohydrodynamic (MHD) structures to small kinetic regimes. Classical turbulence 
theories and analysis methods, such as structural analysis with Kolmogorov’s -5/3 power-law for 
hydrodynamic turbulence and Kraichnan’s -3/2 exponent for magnetized fluids, have been 
extensively used to describe large-scale dynamics. However, at kinetic scales turbulence 
transitions into a regime where fluid models become inadequate, and statistical approaches are 
necessary to characterize stochastic processes governing transition to smaller and smaller scales. 
The recent high-resolution spacecraft measurements allow for the direct exploration of these 
kinetic-scale processes, providing unprecedented insight into turbulence in the Earth's 
magnetosphere and enabling modern statistical analyses. 

This doctoral dissertation consists of a series of publications that analyze turbulence in the near-
Earth environment using high-resolution magnetic field and plasma measurements from the 
Magnetospheric Multiscale (MMS) mission [1,2,3]. The goal is to determine whether turbulence 
at kinetic scales exhibits Markovian properties, evaluate the applicability of the Fokker-Planck 
equation, and investigate the role of Kappa distributions in characterizing the Probability Density 
Functions (PDFs) of fluctuations. These findings on very small scales are compared to previous 
studies on larger MHD scales [4], including classical turbulence theories [5], and observations 
from other space missions such as Voyager, Advanced Composition Explorer (ACE), Ulysses [4], 
and the recent Parker Solar Probe [6]. Therefore, the comparison of statistical properties between 
different plasma regions, i.e., just behind the bow shock, deep inside the magnetosheath, and near 
the magnetopause, provides a test for turbulence theories and the universality of stochastic 
processes across varying space environments. 

The analysis is based on statistical methods that quantify the stochastic properties of turbulence. 
The brief spectral analysis indicates that at kinetic scales, turbulence exhibits steeper spectral 
slopes of around -16/3, compared to the inertial range, reinforcing the idea that different physical 
mechanisms operate at sub-ion scales [7]. One of the key findings is that turbulence at kinetic 
scales retains a Markovian character, as confirmed through the Chapman-Kolmogorov equation. 
This result supports the notion that energy transfer in turbulence can be described by a local 
interaction process rather than requiring long-range correlations. The validation of this property at 
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such small scales is significant because it suggests that energy redistribution mechanisms are 
primarily local. Furthermore, the Kramers-Moyal expansion is employed, with the first and second 
terms that follow linear and quadratic dependencies as drift and diffusion terms. This suggests that 
turbulence follows generalized Ornstein-Uhlenbeck processes, enabling the formulation of the 
Fokker-Planck equation that governs the evolution of turbulent fluctuations. The solutions of this 
equation align well with experimentally derived PDFs, demonstrating that turbulence at these 
scales can be described by Kappa distributions with varying degrees of non-Gaussianity. The 
presence of scale invariance further supports the universality of these statistical properties across 
different near-Earth regions. The dependence of the Kappa parameter on scale size further supports 
the idea that turbulence cascades in a self-similar but intermittent manner, confirming results from 
past solar wind studies [5]. 

Another important part of this study is the distinction between the statistical properties of magnetic 
and velocity fluctuations from the MMS mission. While magnetic field fluctuations exhibit strong 
Markov properties, velocity fluctuations show somewhat larger deviations, and the higher-order 
Kramers-Moyal terms should be employed. This result aligns with other studies suggesting that 
kinetic turbulence is not solely governed by linear wave interactions but is also influenced by 
localized, nonlinear structures [6]. These findings are in agreement with previous analyses of 
turbulence in the inertial range [4], but extend the understanding to much smaller scales, where 
kinetic effects become significant. The comparison with Parker Solar Probe mission data [6] 
indicates that similar statistical properties exist in the near-Sun turbulence, reinforcing the idea 
that turbulence in space plasmas follows a self-consistent stochastic framework. 

This contribution is also significant by looking at the comparison of Markovian properties. By 
analyzing turbulence in various near-Earth environments, the results demonstrate that while the 
underlying stochastic processes exhibit universal features, the strength of intermittency and non-
Gaussianity varies with plasma conditions. This observation suggests that turbulence evolution is 
influenced by external factors, such as large-scale solar wind structures, rather than being purely 
intrinsic to the kinetic cascade [4]. This reinforces the argument that while turbulence is a universal 
process, its local characteristics depend strongly on boundary conditions and plasma environment. 

Further analysis of the PDFs of turbulent fluctuations reveals that the probability distributions 
deviate significantly from Gaussianity at the smallest resolved scales, highlighting the role of 
intermittency and coherent structures in kinetic turbulence. The presence of heavy-tailed 
distributions, particularly at sub-ion scales, suggests a nonuniform energy cascade dominated by 
localized dissipation events, potentially linked to strong current sheets [6]. 

The implications of these findings are broad, providing new insights into the nature of turbulence-
driven energy dissipation in space plasmas. The confirmation of Markovian properties at kinetic 
scales offers a strong foundation for stochastic modeling approaches, bridging the gap between 
large-scale MHD turbulence and small-scale kinetic effects. The emergence of Kappa distributions 
as natural solutions to the Fokker-Planck equation underscores their importance in describing 
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turbulent fluctuations in space and astrophysical plasmas. These results contribute to a deeper 
understanding of the universal features of plasma turbulence, offering valuable constraints for 
theoretical models and numerical simulations. 

 
Keywords: Kinetic scales, Markov processes, MMS probes, Plasmas, Solar wind, Magnetosphere, 
Turbulence. 
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Abstract

In our previous studies we have examined solar wind and magnetospheric plasma turbulence, including Markovian
character on large inertial magnetohydrodynamic scales. Here we present the results of the statistical analysis of
magnetic field fluctuations in the Earth’s magnetosheath, based on the Magnetospheric Multiscale mission at much
smaller kinetic scales. Following our results on spectral analysis with very large slopes of about −16/3, we apply a
Markov-process approach to turbulence in this kinetic regime. It is shown that the Chapman–Kolmogorov equation
is satisfied and that the lowest-order Kramers–Moyal coefficients describing drift and diffusion with a power-law
dependence are consistent with a generalized Ornstein–Uhlenbeck process. The solutions of the Fokker–Planck
equation agree with experimental probability density functions, which exhibit a universal global scale invariance
through the kinetic domain. In particular, for moderate scales we have the kappa distribution described by various
peaked shapes with heavy tails, which, with large values of the kappa parameter, are reduced to the Gaussian
distribution for large inertial scales. This shows that the turbulence cascade can be described by the Markov
processes also on very small scales. The obtained results on kinetic scales may be useful for a better understanding
of the physical mechanisms governing turbulence.

Unified Astronomy Thesaurus concepts: Solar wind (1534); Interplanetary turbulence (830); Heliosphere (711);
Interplanetary physics (827); Space plasmas (1544); Magnetohydrodynamics (1964)

1. Introduction

Turbulence appears in many real systems in nature,
including various fluids with embedded magnetic fields (Frisch
1995; Biskamp 2003). In particular, space and astrophysical
plasmas are natural laboratories for investigating the dynamics
of turbulence (Chang 2015; Bruno & Carbone 2016; Echim
et al. 2021). This is a complex phenomenon that contains
deterministic and random components. Therefore, besides the
effort to describe this problem in terms of difference equations,
a statistical approach is also useful. The important question for
any dynamical system is whether given a probability distribu-
tion of the characteristic property of a system in a given
moment, one can determine statistical properties of this
dynamical system in the future. Therefore, the concept of a
Markov process in which the future statistics is independent of
the past is an important issue also for turbulence (Pedrizzetti &
Novikov 1994). It is possible to prove the existence of a
Markov process experimentally and furthermore to extract the
differential equation for this Markov process directly from the
measured data without using any assumptions or models for the
underlying stochastic process (Renner et al. 2001). Strumik &
Macek (2008a, 2008b) have applied this statistical method to
solar wind magnetic fluctuations in the inertial range. A similar
approach has recently been applied to the Parker Solar Probe
(PSP) mission in the solar wind at subproton scales (Benella
et al. 2022).

Our previous studies have also dealt with turbulence in solar
wind and magnetospheric plasmas on large (inertial) magneto-
hydrodynamic scales, using observations by the Ulysses mission
in the solar wind beyond the ecliptic plane (Wawrzaszek &
Macek 2010) and by the Voyager mission in the heliosphere and
heliosheath (Macek et al. 2011, 2012) and even at the
boundaries of the solar system (Macek et al. 2014). Based on
the THEMIS mission in the Earth’s magnetosheath, we have
also verified that turbulence at shocks is well described by
inward- and outward-propagating Alfvén waves (Macek et al.
2015, 2017).
Here we consider again turbulence in the Earth’s magne-

tosheath, where timescales are much shorter than those in the
heliosheath, based on observations from the Magnetospheric
Multiscale (MMS) mission on kinetic scales (Macek et al.
2018). In this case it is hotly debated whether the turbulence
energy cascade results from the dissipation of the kinetic
Alfvén waves (KAWs; e.g., Schekochihin et al. 2009). Papini
et al. (2021) have recently argued that the turbulence energy at
kinetic scales could not be related to KAW activity but is
mainly driven by localized nonlinear structures. Certainly, it is
possible that the observed stochastic nature of fluctuations in
the sub-ion scale could be due to the interaction between
coherent structures (e.g., Chang 2015; Echim et al. 2021),
including local reconnection processes at kinetic scales (Macek
et al. 2019a, 2019b). Admittedly, the nature of wave modes in
operation cannot be determined by statistical analysis, but we
hope that the Markov approach will provide a contact point
with a dynamical system approach to turbulence and hence that
the results of this study will be useful in future investigations.
The data under study are briefly described in Section 2, with

statistical methods outlined in Section 3. In Section 4 we
present the results of our analysis, showing that the solutions of
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the Fokker–Planck equation agree well with experimental
probability density functions (PDFs). The importance of
Markov processes for turbulence in space plasmas with a
universal global scale invariance through the kinetic domain is
underlined in Section 5.

2. Data

The MMS mission was launched in 2015 to investigate
plasma processes in the magnetospheric and the solar wind
plasma, especially on small scales (Burch et al. 2016). We
analyze the statistics of the fluctuations of all components of
the magnetic field B= (Bx, By, Bz) with the total magnitude
BT= |B| in the Geocentric Solar Ecliptic (GSE) coordinates
obtained from the FluxGate Magnetometer (FGM; see Russell
et al. 2016). We investigate BURST-type observations with the
highest available resolution of ΔtB= 7.8 ms, which corre-
sponds to approximately 128 samples per second. Macek et al.
(2018) have selected an interval on 2015 December 28 from
01:48:04 to 01:52:59 with 37,856 measurement points for the
magnetic field, which are available just behind the bow shock
(BS). The position of the MMS during this event within the
Earth’s magnetosheath has been depicted in Figure 1, case (a)
of Macek et al. (2018). Admittedly, the highest-resolution
BURST-type magnetic data B are limited in time. This analysis
has allowed us to go well beyond the kinetic regime, i.e., above
the electron Taylor-shifted inertial frequency fλe= (V/c)fpe,
where fpe is the plasma frequency, V is the solar wind velocity,
and c denotes the speed of light, at above fλe∼ 20 Hz,
characterized by a steep spectrum with a slope of about −11/2,
as seen in their Figure 2 (for details, see Macek et al. 2018).
Even though with lower resolution for the ion velocity V the
spectrum could only be resolved to the onset of kinetic scales at
∼2 Hz, it is worth investigating this case further in view of the
Markov property of turbulence.

3. Methods

As usual we use the increments of any characteristic
parameter x describing a turbulent system

d t t= + -x t x t x t, 1( ) ( ) ( ) ( )

at each time t and a given scale τ. Following the well-known
scenario, the fluctuations δx(t, τ) in a larger scale are transferred
to smaller and smaller scales τ. In this way turbulence may be
regarded as a stochastic process with the N-point joint
transition probability distribution P(x1, τ1|x2, τ2;K;xN, τN),
where P(xi, τi|xj, τj)= P(xi, τi; xj, τj)/P(xj, τj) is the conditional
PDF. The process is Markovian if the N-point joint transition
probability distribution is completely determined by the initial
values. Hence in this case one should have

t t t t t¼ =P x x x P x x, , ; ; , , , , 2N N1 1 2 2 1 1 2 2( ! ) ( ! ) ( )

or more generally, the necessary Chapman–Kolmogorov
condition is satisfied:

òt t t t t t= ¢ ¢ ¢ ¢ ¢
-¥

+¥
P x x P x x P x x dx, , , , , , ,

3

1 1 2 2 1 1 2 2( ! ) ( ! ) ( ! )
( )

where t t t< ¢ <1 2. Further, using the Kramers–Moyal expan-
sion, one obtains this condition in a differential form

åt t
t

t t t-
¶ ¢ ¢

¶
= -

¶
¶

¢ ¢
=

¥P x x
x

D x P x x
, ,

, , , , 4
k

k
k

1

( ! ) ( ) ( ! ) ( )( )⎛⎝ ⎞⎠
where the coefficients D( k)(x, τ) are determined by the
moments of the conditional PDFS (see Risken 1996; Benella
et al. 2022):

òt t t t¢ = ¢ - ¢ ¢ ¢
-¥

+¥
M x x x P x x dx, , , , 5k k( ) ( ) ( ! ) ( )( )

in the limit t t ¢

t
t t t t

t t=
 ¢ - ¢

¢D x
k

M x,
1

lim
1

, , . 6k k( )
!

( ) ( )( ) ( )

Moreover, if the fourth-order coefficient is equal to zero, then
according to Pawula’s theorem, D( k)(x, τ)= 0 for k� 3, and the
series is limited to the second order. In this case one arrives at
the Fokker–Planck equation in the following reduced differ-
ential form (Risken 1996):

t
t

t t t-
¶

¶
= -

¶
¶

+
¶
¶

P x
x

D x
x

D x P x
,

, , , ,

7

1
2

2
2( ) ( ) ( ) ( )

( )

( ) ( )⎡⎣⎢ ⎤⎦⎥
where the first and second terms describe, respectively, the drift
and diffusion functions of the deterministic evolution of the
transition probability of a stochastic process described by the
Langevin equation

t
t t t-

¶
¶

= + G
x

D x D x, , , 81 2( ) ( ) ( ) ( )( ) ( )

i.e., the process generated (with Itô definition) by the delta-
correlated Gaussian white noise, t t d t tG G ¢ = - ¢2( ) ( ) ( )
(Rinn et al. 2016). The minus signs on the left-hand sides of
Equations (7) and (8) indicate that the corresponding transitions
proceed backward toward smaller scales. More explicitly,
Equation (7) reads

t
t

t
t

t
t t

t t
t

-
¶

¶
=

¶
¶

+ - +
¶

¶
¶

¶
+

+ -
¶

¶
+

¶
¶
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P x
x

D x
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x
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x

D x
x
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x
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,
,

,

, 2
, ,

, ,
, .

2
2

2

1
2

1 2 2

2

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

( )
( )

( ) ( )

⎡⎣⎢ ⎤⎦⎥⎡⎣⎢ ⎤⎦⎥
Note that here we have taken the standard definitions used by
Risken (1996), while Strumik & Macek (2008a, 2008b) and
Renner et al. (2001) have multiplied the Kramers–Moyal
coefficients by τ, corresponding to a logarithmic length scale.
A simple solution ps(x) can be obtained from the following
stationary Fokker–Planck equation:

t t
¶
¶

=
x

D x p x D x p x, , , 10s s
2 1[ ( ) ( )] ( ) ( ) ( )( ) ( )

resulting from the left-hand side of Equation (7) being equal
to zero.
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Figure 1. Time series of the magnetic field components B = (Bx, By, Bz) in the GSE coordinates and the total magnitude BT = |B| of the MMS data with the
corresponding spectrum of the high-resolution turbulence in the magnetosheath near the BS for frequencies above the ion gyrofrequency fci, marked by a dashed
vertical line, and between the ion fλi and above the electron fλe Taylor-shifted inertial frequencies shown by the dashed–dotted and dotted lines, respectively (case (a)
in Table 1 of Macek et al. 2018).
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4. Results

This method has been successfully applied in the inertial
range for magnetic field fluctuations based on the Ulysses data
with a time resolution of 1 s (Strumik & Macek 2008a). The
Markovian character of solar wind turbulence has also been
confirmed by using the ACE data for both magnetic field (16 s)
and velocity (48 s) samples (Strumik & Macek 2008b). In this
paper we would like to test the Markov property of turbulence
on much smaller millisecond scales, which allows us to go
beyond the inertial range at least for the case of magnetic field
fluctuations.

Figure 1 shows the time series of all components of the
magnetic field B= (Bx, By, Bz) with magnitude BT= |B| in the
GSE coordinates acquired by the MMS on 2015 December 28
during the 5 minute time BURST interval (from 01:48:04 to
01:52:59), specified as case (a) in Table 1 of Macek et al.
(2018), with the corresponding power spectral densities (PSDs)
of all the components of the magnetic field B obtained with
Welchʼs (1967) windows. It is worth noting that for the
magnetic spectrum above fλe we enter the kinetic regime with
the much steeper slope of −5.6± 0.3 that is consistent with the
value of −16/3 predicted by the kinetic theory of Alfvén
waves (e.g., Schekochihin et al. 2009).

First, according to Equation (1), we analyze increments of
fluctuations bτ≔ B(t+ τ)−B(t) across a timescale τ for each
GSE component x, y, and z and the total intensity of the magnetic
field B. Using the conditional probability introduced in Section 3,
we can compute P(b1, τ1|b2, τ2) on the right-hand side of
Equation (2) directly from the MMS data. Then, to verify a local
transfer mechanism in the turbulence cascade, we can test whether
the Chapman–Kolmogorov condition of Equation (3) is satisfied
for the range of scales from τ1 to τ2, where t t t< ¢ <1 2.
In Figure 2 we compare the observed contour plots (red

curves) of conditional probabilities at various scales τ with
solutions (dashed blue curves) of Equation (3). The subsequent
isolines correspond to the following decreasing levels of the
conditional PDF (from the middle of the plots) for b: 2, 1.1,
0.5, 0.3, 0.05, and 0.02. In the corresponding Figure 3 we
verify the Chapman–Kolmogorov Equation (3) by comparison
of cuts through the conditional probability distributions for
some chosen values of parameter bτ in the time series specified
by Equation (1), which have been differentiated, and the
variance stationarity has been confirmed by using the statistical
augmented Dickey–Fuller test (Dickey & Fuller 1979). We
have chosen here for the magnetic field bτ: τ1 = 0.02 s, t¢=
τ1+ΔtB = 0.0278 s, and τ2= τ1+ 2ΔtB = 0.0356 s. We see
that Equation (3) is approximately satisfied up to the scales of

Figure 2. Comparison of the observed contour plots (red curves) of conditional probabilities at various scales τ reconstructed from the MMS magnetic field
components in the magnetosheath, corresponding to the spectra in Figure 1, with those contour plots that are reconstructed (dashed blue curves) according to the
Chapman–Kolmogorov condition, Equation (3).
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about 100 ΔtB= 0.78 s for bτ, which indicates that the
turbulence cascade exhibits Markov properties.

Second, we need to compute the Kramers–Moyal coeffi-
cients D( k)(x, τ) in the Fokker–Planck expansion given by
Equation (4). The values of the moments t t¢M x, ,k ( )( ) defined

in Equation (5) can be obtained from the experimental data by
counting the number ¢N x x,( ) of occurrences of fluctuations ¢x
and x. Since the errors of ¢N x x,( ) are given by ¢N x x1 , ,( )
the errors for the conditional moments t t¢M x, ,k ( )( ) can also
be provided (see Renner et al. 2001).

Figure 3. Comparison of cuts through P(b1, τ1|b2, τ2) for the fixed value of all components of the magnetic field increments b2 with τ1 = 0.02 s, t¢ = 0.0278 s, and
τ2 = 0.0356 s.
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Admittedly D( k)(x, τ) can only be obtained by extrapolation
(for instance by using piecewise linear regression) in the limit
t t ¢ in Equation (6), but we have checked that very similar
values are obtained when we take the lowest time resolution
t t- ¢ = DtB = 0.0078 s. In fact, we have t »D x,k ( )( )

t t¢
D

M x, ,
k t

k1 1 ( )!
( ) . Therefore, basically the coefficients D( k)(x, τ)

show the same dependence on x as M( k)(x, τ, τ′) (see Renner et al.
2001). Figure 4 presents the fits to the first-order drift D(1)(x, τ) and
the second-order finite-size diffusion D(2)(x, τ) coefficients for
ΔtB= 0.0078 s. We have also verified that the fourth-order
coefficient D(4)(x, τ) is close to zero for the magnetic field data
according to Pawula’s theorem, which is a necessary and sufficient

Figure 4. First and second finite-size Kramers–Moyal coefficients depending on the magnetic field increments bτ for all components of the magnetic field B = (Bx, By,
Bz) and the total magnitude BT = |B|. The dashed red lines show the best fits to the calculated values of D(1)(b, τ) and D(2)(b, τ) with D(4)(b, τ) = 0, according to
Pawula’s theorem.
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condition that the Kramers–Moyal expansion of Equation (4) stops
after the second term.

In this case, we see that the best-obtained fits to these lowest-
order coefficients are linear

t t= -D x a x, 111
1( ) ( ) ( )( )

and quadratic functions of x

t t t= +D x a b x, , 122
2 2

2( ) ( ) ( ) ( )( )

respectively, where the appropriate fitted parameters ak for
k = 1 and 2 and b2 depend on the timescale τ. This corresponds
to the generalized Ornstein–Uhlenbeck process. It is interesting
to note that, similarly to those obtained for the PSP data by
Benella et al. (2022), who have looked at larger τ, the best fit
for any x representing each component of bτ satisfies a power-
law dependence Aτα with sufficient accuracy and the values for
all the parameters that are listed in Table 1.

In fact, as seen in Figure 5 on the logarithmic scale (see
Strumik & Macek 2008a, Figure 5), we have verified here that
for the MMS magnetic field data, these lowest-order fits with
power-law dependence apply for τ� 100ΔtB= 0.78 s when
the PDF is closer to Gaussian, τ∼ τG. However, for higher
scales, more complex functional dependence is necessary,
especially in the inertial regime (Renner et al. 2001; Strumik &
Macek 2008a, 2008b).

We see again that by using the simple linear and parabolic
fits of Equations (11) and (12), the stationary solutions of
Equation (10) become the well-known continuous kappa
distributions (also known as Pearson type VII distribution),
which the PDF defined as

t t
=

+
=

¢

+
k

k + t
t

p x
N N

a b x1
, 13s

o

x
x

o

1 2
2 2

2 1

o

a
b
1

2 2( )( )
[ ( ) ( ) ]

( )( )
( )⎡⎣ ⎤⎦

with κ= 1+ a1(τ)/[2b2(τ)] and t t k= =x a bo
2

2 2( ) ( )
t t t+a b a 22 2 1( ) [ ( ) ( ) ] (for a2(τ)≠ 0, xo(τ)≠ 0) and

No= ps(0) satisfying the normalization ò ¢ ¢ =
-¥

+¥
p x dx 1s ( ) ,

i.e., = k
pk k

G
G -

No x 1 2o

( )
( ) . As requested, the boundary condition

pS(x→±∞ )→ 0 is also verified here, and with κ→∞, the
distribution degenerates into the Maxwellian distribution

-N eo
x
xo

2( ) with =
p

No x
1

o
. The values of the relevant parameters

of Equation (13) obtained by fitting the MMS data to the given
distributions are κ = 11.85673, x0 = 1.756009, and
¢N0 = 0.4121234 for Bx; κ = 10.09043, x0 =3.05319, and
¢N0 = 0.2684886 for By; κ = 11.04104, x0 = 2.779299, and
¢N0 = 0.2802258 for Bz; and κ = 12.88198, x0 = 1.75533, and
¢N0 = 0.4133008 for BT. These values of κ would correspond to

the nonextensivity parameter of the generalized (Tsallis)
entropy q= 1− 1/κ≈ 0.9, which is somewhat larger than
q∼ 0.5 for κ∼ 2 reported for the PSP data by Benella et al.
(2022).
In addition, substituting Equations (11) and (12) into

Equation (7) we obtain

t t
t

t t

t t
t

t t t

+
¶

¶
+ +

´
¶

¶
+

¶
¶

+ + =

a b x
P x

x
a b

x
P x

x
P x

a b P x

,
4

, ,

2 , 0. 14

2 2
2

2

2 1 2

1 2

[ ( ) ( ) ] ( ) [ ( ) ( )]

( ) ( )

[ ( ) ( )] ( ) ( )
This means that in the Fokker–Planck, Equations (9) and (14)
become formally the second-order parabolic partial differential
equation.
This, in turn, allows us to solve numerically the nonsta-

tionary Fokker–Planck equation (Figure 6, dashed lines) using
the numerical Euler integration scheme (verified for stationary
solution =t

t
¶

¶
0P x,( ) , open points), which agrees with those

obtained with the modeling package by Rinn et al. (2016). We
compare all these theoretical solutions with the PDFs obtained
directly from experimental data denoted by the different-
colored continuous lines. This comparison is depicted in
Figure 6 for various scales τ not greater than τG, namely (from
bottom to top) for τ = 1, 5, 10, 15, 25, 50, and 100 ΔtB shifted
in the vertical direction for clarity of presentation. For moderate
values up to τ∼ 50ΔtB= 0.39 s in the case of linear and
parabolic fits to Equations (11) and (12), we have the kappa
distributions. However if we move to the larger scales τG from
100 ΔtB= 0.78 s, the Kramers–Moyal coefficients D(1) and
D(2) in Equation (4) are possibly described by more complex
polynomial functions, but the PDF is approximately Gaussian,
as expected for large values of κ. On the other hand, for the
smallest available scales we see a very peaked density function
(with large kurtosis) well described by the approximate shape
of the Dirac delta function (formally in the limit of τ→ 0).
In Figure 7, we have finally reproduced the PDFs of all

components bτ rescaled by the respective standard deviations
σb,τ, which are consistent with the stationary solutions (open
circles) in Figure 6. Owing to a power-law dependence of the
the first and second Kramers–Moyal parameterization, as for
the PSP analysis by Benella et al. (2022), near the Sun with
κ∼ 2 for scales up to τ∼ 0.05 s, the MMS data exhibit a
universal global scale invariance mainly at 1 au up to
τ∼ 50ΔtB∼ 0.4 s, where we have clear kappa distributions
but with some larger values of κ∼ 10. Since for somewhat
larger scales from τG∼ 100ΔtB∼ 0.8 s (not shown here) the
respective kappa distributions are very close to a limiting

Table 1
Parameters for Power-law Dependence of First and Second Kramers–Moyal
Coefficients Corresponding to Equations (11) and (12) for All Components of

the Magnetic Field B and the Total Magnitude BT = |B|

bx A α

a1 0.6638 ± 0.0355 −1.2376 ± 0.0215
a2 −0.4925 ± 0.0155 0.9416 ± 0.0094
b2 0.5918 ± 0.0296 −1.6919 ± 0.0179

by A α

a1 0.6534 ± 0.0278 −1.2026 ± 0.0169
a2 −0.4216 ± 0.0203 0.9699 ± 0.0123
b2 0.5612 ± 0.0316 −1.5263 ± 0.0192

bz A α

a1 0.5646 ± 0.0286 −1.2253 ± 0.0173
a2 −0.4024 ± 0.0172 1.0934 ± 0.0104
b2 0.5941 ± 0.0241 −1.6623 ± 0.0146

bT A α

a1 0.6989 ± 0.0225 −1.1191 ± 0.0089
a2 −0.4946 ± 0.1259 1.1631 ± 0.0498
b2 0.5854 ± 0.0706 −1.7325 ± 0.0279
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Gaussian shape, this would result in some more deviations
from the global scale invariance (not only on tails).

Our results demonstrate that the energy transfer among the
different scales is essentially a stochastic process that can be
modeled by the Fokker–Planck advection-diffusion equation also in
the kinetic regime. As we already suggested in our earlier analysis
for inertial range of scales (Strumik & Macek 2008a, 2008b),
because the transfer among the different scales is a stochastic

“memoryless” process, we should expect a universal structure in
the turbulent dynamics. This is actually shown by our statistical
analysis of the PDFs up to kinetic scales.

5. Conclusions

MMS and PSP missions with unprecedented high milli-
second time resolution of magnetometer data allow us to

Figure 5. Linear dependence of the parameters a1, a2, and b2 on the logarithmic scale τ. See Equations (11) and (12) for all components of the magnetic field B = (Bx,
By, Bz) and the total magnitude BT = |B|.
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investigate turbulence on very small kinetic scales. In this paper
we have looked at the MMS observations above 20 Hz, where
the magnetic spectrum becomes very steep with the slope, close
to −16/3, resulting possibly from interaction between coherent
structures.

Following our previous studies in the inertial region
(Strumik & Macek 2008a, 2008b) we have shown for the first
time that the Chapman–Kolmogorov equation, which is a
necessary condition for the Markovian character of turbulence,
is satisfied, exhibiting a local transfer mechanism of turbulence
cascade also on much smaller kinetic scales. Moreover, we
have verified that in this case the Fokker–Planck equation is

reduced to drift and diffusion terms at least for scales smaller
than 0.8 s.
In particular, similarly as for PSP data analyzed by Benella

et al. (2022), these lowest-order coefficients are linear and
quadratic functions of magnetic field, which correspond to the
generalized Ornstein–Uhlenbeck processes. We have also
recovered a similar universal scale invariance of the PDFs up
to kinetic scales of about 0.4 s.
It is interesting to note that for moderate scales we have also

non-Gaussian (kappa) distribution, which for the smallest
values of the available scale of 7.8 ms, is approximately
described by a very peaked shape close to the Dirac delta

Figure 6. Comparison of the nonstationary (dashed lines) and stationary (open circles) solutions of the Fokker–Planck equation with the experimental PDFs of the
magnetic field components P(b, τ) fluctuations (continuous colored lines) for all components of the magnetic field B = (Bx, By, Bz) and the total magnitude BT = |B| in
the magnetosheath behind the BS using the MMS data, corresponding to spectra in Figure 1, for various scales (shifted from bottom to top) τ = 0.0078, 0.04, 0.078,
0.12, 0.2, 0.39, and 0.78 s.
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function. We also show that the normal Gaussian distribution is
recovered for timescales two orders larger (with a large value of
the kappa parameter).

We hope that our observation of Markovian futures in solar
wind turbulence will be important for understanding the
relationship between deterministic and stochastic properties
of turbulence cascade at kinetic scales in complex astrophysical
systems.
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A B S T R A C T 
Based on the Magnetospheric Multiscale ( MMS ) mission we look at magnetic field fluctuations in the Earth’s magnetosheath. 
We apply the statistical analysis using a Fokker–Planck equation to investigate processes responsible for stochastic fluctuations 
in space plasmas. As already known, turbulence in the inertial range of hydromagnetic scales exhibits Markovian features. We 
hav e e xtended the statistical approach to much smaller scales in space, where kinetic theory should be applied. Here we study 
in detail and compare the characteristics of magnetic fluctuations behind the bow shock, inside the magnetosheath, and near 
the magnetopause. It appears that the first Kramers–Moyal coefficient is linear and the second term is a quadratic function of 
magnetic increments, which describe drift and diffusion, correspondingly, in the entire magnetosheath. This should correspond 
to a generalization of Ornstein–Uhlenbeck process. We demonstrate that the second-order approximation of the Fokker–Planck 
equation leads to non-Gaussian kappa distributions of the probability density functions. In all cases in the magnetosheath, the 
approximate power -law distrib utions are reco v ered. F or some moderate scales, we have the kappa distributions described by 
various peaked shapes with heavy tails. In particular, for large values of the kappa parameter this shape is reduced to the normal 
Gaussian distribution. It is worth noting that for smaller kinetic scales the rescaled distributions exhibit a universal global scale 
invariance , consistently with the stationary solution of the Fokker–Planck equation. These results, especially on kinetic scales, 
could be important for a better understanding of the physical mechanism go v erning turbulent systems in space and astrophysical 
plasmas. 
Key words: magnetic fields – turbulence – methods: data analysis – methods: statistical – Sun: heliosphere – solar wind. 

1  I N T RO D U C T I O N  
Turbulence is a complex phenomenon that notwithstanding progress 
in (magneto)hydrodynamic simulations is still a challenge for natural 
sciences (Frisch 1995 ), and physical mechanisms responsible for 
turbulence cascade are not clear (Biskamp 2003 ). Fortunately, col- 
lisionless solar wind plasmas can be considered natural laboratories 
for investigating this complex dynamical system (Bruno & Carbone 
2016 ). Fluctuations of magnetic fields play an important role in 
space plasmas, leading also to a phenomenon known as magnetic 
reconnection (e.g. Burlaga 1995 ; Treumann 2009 ). 

Turbulent magnetic reconnection is a process in which energy can 
proficiently be shifted from a magnetic field to the motion of charged 
particles. Therefore, this process responsible for the redistribution of 
kinetic and magnetic energy in space plasmas is pivotal to the Sun, 
Earth, and to other planets and generally across the whole Universe. 
Reconnection also impedes the ef fecti veness of fusion reactors and 
regulates geospace weather that can affect contemporary technology 
such as the Global Positioning System (GPS) navigation, modern 
! E-mail: macek@uksw.edu.pl , macek@cbk.waw.pl (WMM); 
dw ojcik@cbk.w aw.pl (DW) 

mobile phone networks, including electrical power grids. Electric 
fields responsible for reconnection in the Earth’s magnetosphere have 
been observed on kinetic scales by the Magnetospheric Multiscale 
( MMS ) mission (Macek et al. 2019a , b ). Certainly, reconnection in the 
magnetosphere is related to turbulence at small scales (Karimabadi 
et al. 2014 ). 

Basically, in a Markov process, given an initial probability dis- 
tribution function (PDF), the transition to the next stage can fully 
be determined. It is also interesting here that we can pro v e and 
demonstrate the existence of such a Markov process experimentally. 
Namely, without relying on any assumptions or models for the 
underlying stochastic process, we are able to extract the differential 
equation of this Markov process directly from the collected exper- 
imental data. Hence this Markov approach appears to be a bridge 
between the statistical and dynamical analysis of complex physical 
systems. There is substantial evidence based on statistical analysis 
that stochastic fluctuations e xhibit Marko v properties (Pedrizzetti & 
No viko v 1994 ; Renner, Peinke & Friedrich 2001 ). We have already 
pro v ed that turbulence has Markovian features in the inertial range 
of hydromagnetic scales (Strumik & Macek 2008a , b ). Admittedly, 
for turbulence inside the inertial region of magnetized plasma, the 
characteristic spectra should be close to standard Kolmogorov ( 1941 ) 
power-law type with exponent −5/3 ≈ −1.67 (Kolmogorov 1941 ) 
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and Kraichnan ( 1965 ) power-law spectrum with exponent −3/2, but 
surprisingly, the absence of these classical spectra, especially on 
smaller scales, seems to be the rule. 

Moreo v er, we hav e also confirmed clear breakpoints in the 
magnetic energy spectra in the Earth’s magnetosheath (SH), which 
occur near the ion gyrofrequencies just behind the bow shock (BS), 
inside the SH, and before leaving the SH. Namely, we have observed 
that the spectrum steepens at these points to power exponents in the 
kinetic range from −5/2 to −11/2 for the magnetic field data of the 
highest resolution available within the MMS mission (Macek et al. 
2018 ). Therefore, we w ould lik e to investigate the Mark ov property 
of stochastic fluctuations outside this inertial region of magnetized 
plasma on small scales, when the slopes are consistent with kinetic 
theory. 

It should also be noted that based on the measurements of magnetic 
field fluctuations in the Earth’s SH gathered onboard the MMS 
mission, we have recently extended these statistical results to much 
smaller scales, where kinetic theory should be applied (Macek, 
W ́ojcik & Burch 2023 ). Here we compare the characteristics of 
stochastic fluctuations behind the BS, inside the SH, and near the 
magnetopause (MP). In this paper, we therefore present the results 
of our comparative analysis, where we check whether the solutions 
of the Fokker–Planck (FP) equation are consistent with experimental 
PDFs in various regions of the SH. 

In Section 2 , a concise description of the MMS mission and the 
analysed data is provided, while the Section 3 outlines used stochastic 
mathematical and statistical methods. The vital results of our analysis 
are presented in Section 4 , which demonstrates that the solutions of 
the FP equation are in good agreement with empirical PDFs. Finally, 
Section 5 emphasizes the significance of stochastic Markov processes 
in relation to turbulence in space plasmas, which exhibit a universal 
global scale invariance across the kinetic domain. 
2  DATA  
The MMS mission, which began in 2015 March 12 and is still 
in operation, delves into the connection and disconnection of the 
Sun’s and Earth’s magnetic fields. Four spacecraft (namely MMS 1 –
MMS 4 ), which carry identical instrument suites, are orbiting near the 
equator to observe magnetic turbulence in progress. They are formed 
into a p yramid-lik e formation. Each satellite has an octagonal form 
that is around 3.5 m in breadth and 1.2 m in height. The satellites 
rotate at 3 revolutions min −1 during scientific operations. Position 
data are supplied by ultraprecise GPS apparatus, while attitude 
is sustained by four stellar track ers, tw o accelerometers, and two 
solar sensors. All of the spacecraft have identical instruments to 
measure plasmas, magnetic and electric fields, and other particles 
with remarkably high (milliseconds) time resolution and accuracy. 
This allows us to figure out if reconnection takes place in an 
indi vidual area, e verywhere within a broader area simultaneously, 
or traversing through space. The MMS studies the reconnection of 
the solar and terrestrial magnetic fields in both the day and night 
sides of Earth’s magnetosphere, which is the only place where it can 
be directly observed by spacecraft. In our previous studies, we have 
observed reconnection in the Earth’s magnetosphere involving small 
kinetic scales (Macek et al. 2019a , b ). 

We have further examined fluctuations of all components of the 
magnetic fields B = ( B x , B y , B z ) in the Geocentric Solar Ecliptic 
(GSE) coordinates, with the magnitude strength B = | B | (square root 
of the sum of the squares of the field components), which have been 
taken from the MMS Satellite No. 1 ( MMS 1 ), located just beyond the 
Earth’s BS. In this way, we have shown that magnetic fluctuations 

e xhibit Marko v character also on very small kinetic scales (Macek 
et al. 2023 ). Moreo v er, we hav e noticed that in all components the 
Markovian features are quite similar. Here, we would like to further 
investigate statistical properties of magnetic fluctuations in various 
regions of the SH. The spacecraft trajectories in the SH, in three 
different regions, namely 

(a) just behind the BS 
(b) deep inside the SH, and 
(c) near the MP, 

which have been shown in fig. 1 of Macek et al. ( 2018 ). 
Therefore, we would like to look at the measurements of the 

magnetic field strength B = | B | , but now at various regions of the 
SH. To investigate SH stochastic fluctuations, now we have chosen 
the same three different time intervals samples, which correspond to 
table 1 of Macek et al. ( 2018 ). In cases (a) and (c) of approximately 5 
and 1.8 min respective intervals, we use burst-type observations from 
the fluxgate magnetometer (FGM) sensor with the highest resolution 
( " t B ) of 7.8 ms (128 samples s −1 ) with 37 856 and 13 959 data 
points, correspondingly. Ho we ver, in the other case (b), between 
the BS and the MP, where only substantially lower resolution 62.5–
125 ms in surv e y mode (8–16 samples s −1 ) data are available, we 
have a much longer interval lasting 3.5 h with 198 717 data points 
with " t B = 62.5 s. All of the data are publicly available on the 
website: http://cda web.gsfc.nasa.go v , which is hosted by the National 
Aeronautics and Space Administration (NASA) (Burch et al. 2016 ). 

Admittedly, the gaps in time series, which commonly appear in the 
data gathered from space missions, can have a considerable impact 
on the conclusions that can be derived from statistical analysis based 
on experimental data. One of the powerful but simple tools used 
to cope with this problem is a linear interpolation method between 
points, which we have used, if necessary, to fill these gaps in the 
analysed data sets. Therefore, in Fig. 1 on the upper side of each 
case (a)–(c) from left to right, we have depicted time series of the 
magnetic field strength B = | B | . Whereas on the bottom side of each 
case, we have shown the respective power spectral density (PSD) 
obtained using the method proposed by Welch ( 1967 ). 

The calculated average ion and electron gyrofrequencies are as 
follows: in case (a) f ci = 0.25 Hz, and f ce = 528 Hz; case (b) f ci = 
0.24 Hz and f ce = 510 Hz; and case (c) f ci = 0.29 Hz and f ce = 
609 Hz (Macek et al. 2018 ). In addition, employing the hypothesis 
according to Taylor ( 1938 ), relating time and space scales in this 
way: l = ! sw τ , where l is a spatial scale and ! sw is the mean velocity 
of the solar wind flow in the SH, we estimate characteristic inertial 
frequencies for ions and electrons: in case (a) f λi = 0.55 Hz and f λe = 
24.5 Hz; case (b) f λi = 0.41 Hz and f λe = 18.1 Hz; and case (c) f λi = 
0.45 Hz and f λe = 20.1 Hz. We have marked these values on each 
graph of PSD. In case (a) the obtained spectral exponent is about 
−2.60 ± 0.06 somewhat steeper, before the f λe = 24.5 Hz threshold 
and undoubtedly more steepen than the Kolmogorov ( 1941 ) ( −5/3) 
or Kraichnan ( 1965 ) ( −3/2) slopes. 

On the other hand, outside the inertial range of scales large spectral 
exponents has been reported from the Cluster multispacecraft mis- 
sion (Sahraoui et al. 2009 ), the WIND data (Bruno, Trenchi & Telloni 
2014 ), including the proposed explanation of nature of solar wind 
magnetic fluctuations on kinetic scales based on the missions (e.g. 
Lion, Ale xandro va & Zaslavsky 2016 ; Roberts et al. 2016 ). Owing 
to unprecedented high 7.8 ms time resolution of magnetometer data 
in the MMS mission available in burst mode, we also see that in 
case (a) the slope is of −2.60 ± 0.06 (close to −5/2) abo v e f λe = 
24.5 Hz. This is further followed by an even steeper spectrum with 
the slope of −5.59 ± 0.32 (close to −11/2 or −16/3). Because 
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Figure 1. Time series of the magnetic field strength B = | B | of the MMS data with the corresponding spectra in the SH (a) near the BS, (b) inside the SH, and 
(c) near the MP plotted with three different colours. Average ion gyrofrequency ( f ci ), and a characteristic Taylor’s shifted frequencies for ions ( f λi ) and electrons 
( f λe ) are shown by the dashed, dashed–dotted, and dotted lines, respectively; see table 1 of Macek et al. ( 2018 ). 
of a substantially lower surv e y data resolution of 62.5 ms in case 
(b) the spectrum with −2.24 ± 0.09 ( ≈−7/3) is steeper than the 
Kolmogorov ( 1941 ) ( −5/3) spectrum only after the visible breakpoint 
in the slope, which lies at f = 0.12 Hz, i.e. near the ion gyrofrequency 
f ci = 0.24 Hz, while more gentle slope of −0.77 ± 0.06 is observed 
before this breakpoint. Finally, in case (c), similarly as in case (a) 
using BURST data, the spectral exponent of −2.75 ± 0.05 is again 
steeper before, and even more with the exponent −3.82 ± 0.06 
(close to −7/2) after the observed breakpoint that lies at around 
the electron Taylor’s ( 1938 ) shifted frequency f λe = 20 Hz, as 
discussed by Macek et al. ( 2018 ). This shows that the observed 
stochastic nature of fluctuations in the subion scale could be due 
to the interaction between coherent structures (Perrone et al. 2016 , 
2017 ), and a very high slope of −16/3 is possibly related to the 
dissipation of the kinetic Alfv ́en w aves (e.g. Schek ochihin et al. 
2009 ). 
3  M E T H O D S  O F  DATA  ANALYSIS  
As usual, we use the fluctuations of the magnetic fields B = | B | , which 
describe this turbulent system at each time t > 0. Therefore, with a 
given time-scale τ i > 0 ∀ i , one can typically define the increments 
of this quantity as follows: 
b i ( t) : = B( t + τi ) − B( t) , (1) 

and, assuming an arbitrary τ i > 0, it can be labelled as b τ or b for 
simplicity in the following sections. 

We assume that the fluctuations of increment b τ in a larger time- 
scale τ are transferred to smaller and smaller scales. Therefore, 
stochastic fluctuations may be regarded as a stochastic process 
in scale with the N -point joint (transition) conditional probability 
density function denoted by P ( b 1 , τ 1 | b 2 , τ 2 , . . . , b N , τN ). In this case, 
the conditional probability density function is defined by default as 
P ( b i , τi | b j , τj ) = P ( b i , τi ; b j , τj ) 

P ( b j , τj ) , (2) 
with the marginal (unconditional) probability density function, 
P ( b j , τ j ), and the joint probability function, P ( b i , τ i ; b j , τ j ), of finding 
the fluctuations b i at a scale τ i and b j at a scale τ j , for 0 < τ i < τ j . In 
the same way, we may construct the conditional probability densities 
for any longer sequences of increments b . 

The stochastic process is Markovian if the conditional probability 
function depends only on the initial values b 1 and b 2 at the time- 
scales τ 1 and τ 2 , but not on b 3 at the next larger scale τ 3 , and so on, 
i.e. for any i = 1, . . . , N we have 
P ( b 1 , τ1 | b 2 , τ2 ) = P ( b 1 , τ1 | b 2 , τ2 , ..., b N , τN ) (3) 
for 0 < τ 1 < τ 2 < · · · < τN . Basically, the Markov process 
can be determined by the initial conditional probability function 
P ( b 1 , τ 1 | b 2 , τ 2 ). Strictly speaking, the future states of the process 
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are conditionally independent of past states. Because of this relation, 
the conditional probabilities are also called transition probabilities, 
while the property of equation ( 3 ) is known as a memorylessness . 

One of the generalizations of equation ( 3 ) is called the Chapman–
Kolmogorov (CK) condition, which is given by the equation (Risken 
1996 ) 
P ( b 1 , τ1 | b 2 , τ2 ) = ∫ +∞ 

−∞ P ( b 1 , τ1 | b ′ , τ ′ ) P ( b ′ , τ ′ | b 2 , τ2 ) d b ′ (4) 
for τ 1 < τ ′ 

< τ 2 . This equation can be interpreted in the following 
way: the transition probability from b 2 at a time-scale τ 2 to b 1 at 
a time-scale τ 1 is the same as a product of the transition probability 
from b 2 at a time-scale τ 2 to b ′ at a time-scale τ ′ 

, and the transition 
probability from b ′ at a time-scale τ ′ 

to b 1 at a time-scale τ 1 , for 
all possible b ′ s. Let us emphasize here that such a generalization 
is a necessary condition for a stochastic process to be the Markov 
process. 

Next, from the CK condition of equation ( 4 ), by using a stan- 
dard series expansion, one can derive a corresponding Kramers–
Mo yal (KM) backw ard expansion with an infinite number of terms. 
Backward expansions are equations of evolution of probability 
P ( b , τ | b ′ , τ

′ 
), where we differentiate with respect to b . This 

equation has the following differential form (see section 4.2 of Risken 
1996 ): 
− ∂ 
∂ τ P ( b , τ | b ′ , τ ′ ) = ∞ ∑ 

k= 1 
(

− ∂ 
∂ b 

)k 
D ( k) ( b , τ ) P ( b , τ | b ′ , τ ′ ) , (5) 

where it is important to note that the differential symbol acts on 
both D ( k ) ( b , τ ) and P ( b , τ | b ′ , τ ′ 

) coefficients. Since the solutions 
of the forward and backward KM equations are equi v alent, then 
without loss of generality, we can label it as KM e xpansion. F ormally, 
D ( k ) ( b , τ ) are called KM coefficients, which in this way are defined as 
the limit at τ → τ ′ of k th power of conditional moments (see Risken 
1996 ): 
D ( k) ( b, τ ) = 1 

k! lim 
τ→ τ ′ 1 

τ − τ ′ M ( k) ( b, τ, τ ′ ) , (6) 
M ( k) ( b, τ, τ ′ ) = ∫ +∞ 

−∞ ( b ′ − b) k P ( b ′ , τ ′ | b, τ ) d b ′ . (7) 
Ideally, using the conditional moments M ( k ) ( b , τ , τ

′ 
), the KM 

coefficients can be evaluated, though they cannot be obtained directly 
from the analysed data. While these conditional moments can be 
calculated from the empirical observations, the D ( k ) ( b , τ ) coefficients 
can only be obtained by extrapolation in the limit τ → τ ′ according to 
equations ( 6 ) and ( 7 ), but these formulae cannot be applied explicitly. 

One of the popular extrapolation methods for this problem is a use 
of piecewise linear regression model with breakpoints. This is a type 
of regression model, which allows multiple linear models to fit to 
the analysed data. The crucial objective of this method is an accurate 
estimation of a number of breakpoints. First, in order to estimate 
the best breakpoint position, we have e v aluated e very v alue within 
a specified interval and looked at the value of logarithmic trans- 
formation of the likelihood function (also known as lo g-lik elihood 
function) of each adjusted model. Naturally, the highest value of 
this function provides the optimal breakpoint. Further, to select (and 
estimate) the best possible number of breakpoints of the segmented 
relationship, we have used the standard Akaike ( 1973 ) information 
criterion (AIC) and Bayesian information criterion (BIC; Schwarz 
1978 ). None the less, the truly similar results are obtained when the 
lowest time resolution is taken. Thus, in our case, we have a simple 

approximation of the KM coefficients, which is given by 
D ( k) ( b , τ ) = 1 

k! 1 
"t M ( k) ( b , τ, τ ′ ) , (8) 

where " t is a given lowest time resolution of the time series. It is 
also interesting to note that D ( k ) ( b , τ ) coefficients show the same 
dependence on b as M ( k ) ( b , τ , τ ′ 

). This simplification substantially 
decreases the time required to obtain the results numerically. 

Now, in order to find the solution of equation ( 5 ), it is necessary to 
determine the number of terms of the right-hand side (RHS) of this 
equation that needs to be considered. According to P a wula’s theorem, 
the KM expansion of a positive transition probability P ( b , τ | b ′ , τ ′ 

) 
may end after the first or second term (e.g. Risken 1996 , section 4.3). 
If it does not end after the second term, then the expansion must 
contain an infinite number of terms. On the other hand, if the second 
term is the last one, namely D ( k ) ( b , τ ) = 0 for k ≥ 3, then the 
KM expansion of equation ( 5 ) leads to the following particular 
formula: 
− ∂ 
∂ τ P ( b , τ | b ′ , τ ′ ) = [ − ∂ 

∂ b D (1) ( b , τ ) + ∂ 2 
∂ b 2 D (2) ( b , τ ) ]

×P ( b , τ | b ′ , τ ′ ) , (9) 
with the well-known FP operator L FP ( b, τ ) in the squared parenthesis 
(e.g. Risken 1996 , equations 5.1 and 5.2) go v erning the evolution 
of the probability density function P ( b , τ | b ′ , τ ′ 

) and is called the 
FP equation (also known as a forward Kolmogorov equation). It 
has been primarily used for the Brownian motion of particles, but 
now equation ( 9 ) defines a generalized Ornstein–Uhlenbeck process. 
Strictly speaking, this is a linear second-order partial differential 
equation of a parabolic type. By solving the FP equation, it is possible 
to find distribution functions from which an y av erages (e xpected 
values) of macroscopic variables can be determined by integration. 
If the rele v ant time-dependent solution is provided, this equation can 
be used to not only describe stationary features, but also the dynamics 
of systems. 

The first term, D (1) ( b , τ ), and the second term, D (2) ( b , τ ) > 0, 
determining the FP equation ( 9 ) are responsible for the drift and 
dif fusion processes, respecti vely. The former process accounts for 
the deterministic evolution of the stochastic process (as a function 
of b and τ ). The latter process modulates the amplitude of the δ- 
correlated Gaussian noise &( τ ) (which is known as the Langevin 
force – the fluctuating force F f ( τ ) per unit mass m ), that fulfils the 
normalization conditions: 〈 & ( τ ) & ( τ ′ 

) 〉 = 2 δ( τ − τ
′ 
), where δ is a 

Dirac delta function and 〈 &( τ ) 〉 = 0 (see Risken 1996 ). Thus, in the 
equi v alent approach another complementary equation arises: 
−∂ b 
∂ τ = D (1) ( b, τ ) + √ 

D (2) ( b, τ ) &( τ ) , (10) 
which is formally called the Langevin equation. Here we have used 
the It ̂ o ( 1944 ) definition that is missing a spurious drift (e.g. Risken 
1996 , section 3.3.3), hence the drift coefficient D (1) occurs directly, 
unlike in the Stratonovich ( 1968 ) definition. Admittedly, the It ̂ o 
( 1944 ) definition is more difficult to interpret and analyse, because 
of the new rules for integration and differentiation that must be used. 
Although, owing to a powerful apparatus, which is the It ̂ o Lemma, it 
allows us to deal with stochastic processes analytically . Anyway , here 
again, all higher KM coefficients D ( k ) for k ≥ 3 are equal to zero. Note 
that the ne gativ e signs on the left-hand side (LHS) of equations ( 9 ) 
and ( 10 ) show that the corresponding transitions proceed backward 
to smaller and smaller scales. 

Next, because the differentiating in the FP operator in equa- 
tion ( 9 ) should act on both the KM coefficients and the conditional 
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probability density P ( b , τ | b ′ , τ ′ 
) by performing relatively simple 

transformations, it can be rewritten in the following expanded form 
(equation 45.3a of Risken 1996 ): 

− ∂ 
∂ τ P ( b , τ | b ′ , τ ′ ) = D (2) ( b , τ | b ′ , τ ′ ) ∂ 2 

∂ b 2 P ( b , τ | b ′ , τ ′ ) 
+ [2 ∂ 

∂ b D (2) ( b , τ | b ′ , τ ′ ) − D (1) ( b , τ | b ′ , τ ′ ) ] ∂ 
∂ b P ( b , τ | b ′ , τ ′ ) 

+ [ ∂ 2 
∂ b 2 D (2) ( b , τ | b ′ , τ ′ ) − ∂ 

∂ b D (1) ( b , τ ) ]P ( b , τ | b ′ , τ ′ ) . (11) 
Formally, equation ( 11 ) resulting from the FP equation ( 9 ) is the 
second-order parabolic partial differential equation. 

It is also worth mentioning that this equation is the generalization 
of the case of thermal conducti vity dif fusion equation, which can 
be solved with the initial and boundary conditions P ( b , τ = 0 | b ′ , 
τ

′ = 0) = p ( b , b ′ ) and P ( b = 0, τ | b ′ = 0, τ ′ 
) = 0, respectively, 

using the method of separation of variables. The solution of non- 
stationary FP equation ( 11 ) can well be approximated numerically, 
i.e. by the difference method. The master curve for the probability 
density function P ( b , τ ) of equation ( 11 ) can readily be e v aluated by 
the stationary solution p s ( b , τ ) of equation ( 9 ), which is given by 
∂ 
∂ b 

[ 
D (2) ( b , τ ) p s ( b , τ ) ] = D (1) ( b , τ ) p s ( b , τ ) (12) 

that results from comparing the LHS of equation ( 9 ) with zero. 
4  RESULTS  
In order to inspect processes responsible for stochastic fluctuations 
in space plasma, we have applied the methods described in Section 3 
to small scale in cases (a) and (c) and medium scale in case (b) 
fluctuations of the magnetic field B = | B | in the Earth’s SH. In 
general, the approach presented in this paper could be applied under 
a few important conditions that should be tested as preliminary 
procedures (see Rinn et al. 2016 ). The first condition is that time 
series data must be stationary. If they were non-stationary, then 
the conditional moments given by equation ( 7 ) are not essentially 
meaningful. The second condition is that the process should be 
Markovian, i.e. the present state should only depend on the preceding 
state. The third condition is that the P a wula’s theorem must hold, as 
discussed in Section 3 . 

Having this in mind, we have started with the brief analysis and 
description of the rele v ant time series and the corresponding graphs 
of power spectral densities. Next, we have checked stationarity of all 
analysed time series (see e.g. Macek 1998 ). To show that a Markov 
processes approach is suitable in our situation, we have moved 
forward to the verification of the necessary CK condition, through 
estimation of the KM coefficients, and then have checked the validity 
of the P a wula’s theorem. This lets us to apply the reduced formula 
of the FP equation ( 9 ), which describes evolution of the probability 
density function P ( b , τ ). 

Following our initial discussion, we must now verify whether the 
data time series under study is stationary . Generally , if a time series 
exhibits no trend, has a constant variance over time, and a consistent 
autocorrelation function o v er time, then it is classified as stationary. 
Such time series are also much easier to model. There are a variety of 
ways to e v aluate this feature of any time series. One of such method 
is the augmented Dickey & Fuller ( 1979 ) test. This test uses the 
following null and alternative hypotheses: H 0 : the time series is non- 
stationary, versus H 1 : the time series is stationary. When the p -value 
is less than 0.05, then the null hypothesis can be rejected and it can be 

concluded that the time series is stationary. In fact, after performing 
such a statistical test, we have determined that in cases (a) and (b), 
the respecti ve p -v alues are < 0.01, indicating that the null hypothesis 
can be rejected. Thus, these magnetic field strength B = | B | time 
series are stationary. Ho we ver, in case (c), where a much smaller 
data sample is available, the p -value is equal to 0.154, hence we have 
failed to reject the null hypothesis. The result suggests that the time 
series is non-stationary and has some time-dependent structure with 
v arying v ariance o v er time. 

Once again, there are various methods of eliminating trends and 
seasonality, which define non-stationary time series. Trends can 
cause the mean to fluctuate o v er time, while seasonality can lead to 
changes in the variance o v er time. The most straightforward approach 
to address this issue is the differencing technique, a common and 
frequently used data transformation that is applied for making time 
series data stationary. Differencing is achieved by subtracting the 
pre vious observ ation from the current one. Follo wing notation in 
equation ( 1 ), this can simply be written as b ( t ) = B ( t ) − B ( t − 1). To 
reverse this process, the prior time-step’s observation must be added 
to the dif ference v alue. The practice of computing the difference 
between successive observations is referred to as a lag-1 difference. 
The number of times that differencing is carried out is referred to as 
the order of differentiation. Fortunately, in our case (c), applying the 
lag-1 (order 1) difference operation has been sufficient to get rid 
of non-stationarity. The augmented Dickey & Fuller ( 1979 ) test has 
yielded a p -value of less than 0.01, thus the null hypothesis could be 
rejected, indicating that the analysed B = | B | time series is stationary. 

We have used one of the exploratory data analysis approaches 
called unsupervised binning method (compare with normalized 
histogram method) to make bins (histogram’s boxes) and to obtain the 
empirical conditional probability density functions P ( b 1 , τ 1 | b 2 , τ 2 ) 
for 0 < τ 1 < τ 2 directly from the analysed data. First, we have 
estimated the empirical joint PDF P ( b 1 , τ 1 ; b 2 , τ 2 ) by counting 
the number of different pairs ( b 1 , b 2 ) on a two-dimensional grid of 
equal width data bins (small intervals). This bins integer should be 
neither too large, such that each bin no longer contains a significant 
quantity of points, nor too small, such that any dependency of the drift 
and diffusion coefficients on the state variable cannot be detected. 
Ne xt, we hav e performed the normalization such that the inte gral 
o v er all bins is equal to 1 (note that the sum will not be equal to 
1 unless bins of unity width are chosen). Similarly, the empirical 
one-dimensional PDF P ( b 2 , τ 2 ) can be estimated with the use of a 
one-dimensional grid of bins (and carrying out the normalization), 
and the empirical conditional PDFs are obtained using equation ( 2 ) 
directly (in a numerical sense). 

In such a way, we have found the empirical conditional probability 
density functions from the analysed data, which are shown by red 
continuous contours in Fig. 2 . They are compared here with the 
theoretical conditional PDFs that are solutions of the CK condition 
of equation ( 4 ) displayed by blue dashed contours, which are 
two-dimensional representation of three-dimensional data. Such a 
comparison is seen in Fig. 2 for the magnetic field increments b , at 
the various scales: in cases (a) and (c) τ 1 = 0.02 s, τ ′ = τ 1 + " t B = 
0.0278 s, τ 2 = τ 1 + 2 " t B = 0.0356 s, where " t B = 0.0078 s, and in 
case (b) τ 1 = 0.2 s, τ ′ = τ 1 + " t B = 0.2625 s, τ 2 = τ 1 + 2 " t B = 
0.325 s, where " t B = 0.0625 s. The depicted subsequent isolines 
correspond to the following decreasing levels of the conditional 
PDFs, from the middle of the plots, for following magnetic field 
increments b : case (a) 2, 1.1, 0.5, 0.3, 0.05, 0.01; case (b) 5, 1, 
0.7, 0.45, 0.3, 0.22, 0.15, 0.1, 0.05; and case (c) 7, 3.3, 1.3, 0.3, 
0.08, 0.06. This is rather evident that the contour lines corresponding 
to these two empirical and theoretical probability distributions are 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/526/4/5779/7259918 by guest on 14 N
ovem

ber 2023



5784 W. M. Macek and D. W ́ojcik 

MNRAS 526, 5779–5790 (2023) 

Figure 2. Comparison of observed contours (red solid curves) of conditional probabilities at various time-scales τ , with reconstructed contours (blue dashed 
curves) according to the Chapman–Kolmogorov (CK) condition, recovered by the use of MMS magnetic field total magnitude B = | B | in the SH: (a) just behind 
the BS, (b) inside the SH, and (c) near the MP, corresponding to the spectra in Fig. 1 . 
nearly matching for all three cases. Thus, it appears that the CK 
condition of equation ( 4 ) is sufficiently well satisfied. 

Next, in the corresponding Fig. 3 , we have verified again the 
CK condition of equation ( 4 ). Intuitively speaking (and somehow 
informally), what we see in Fig. 2 is just a view ‘from the top’ of 
the three-dimensional shape, while in Fig. 3 the orthogonal cuts 
are depicted. Again, we have compared these cuts through the 
conditional probability density functions for particular chosen values 
of parameter b 2 , which can be seen at the top of each plot. As is 
evident, the cuts through the empirical probability density functions 
coincide rather well with the cuts through the theoretical probability 
density functions, providing good fits in all of the analysed cases. 
Admittedly, only in case (b) for b 2 = 0 [nT] the cuts points deviate 
from the lines in tails, but it seems to be caused by the data outliers, 
which can eventually be further eliminated. It is necessary to mention 
that after such a comparison for dif ferent v alues of ( τ 1 , τ ′ 

, τ 2 ), we 
have found that the CK condition of equation ( 4 ) is satisfied for 
b up to a scale of approximately 100 " t B = 0.78 s in case (a), to 
about 150 " t B = 9.375 s in case (b), and around 40 " t B = 0.312 s in 
case (c), thus indicating that the stochastic fluctuations have Markov 
properties. 

To verify Pawula’s theorem, which states that if the fourth-order 
coefficient is equal to zero, then D ( k ) ( b , τ ) = 0, k ≥ 3, it is necessary 
to estimate the D (1) ( b , τ ), D (2) ( b , τ ), and D (4) ( b , τ ) coefficients using 
our experimental data. The standard procedure for calculating these 
values is to use an extrapolation method such as a piecewise linear 
regression to estimate the respective limits in equation ( 6 ). Ho we ver, 
as already mentioned in Section 3 , the similar results are obtained 
by simplifying the problem of finding these coefficients, by using 
equation ( 8 ), which enables us to estimate these values using the 
adequately scaled M ( k ) ( b , τ , τ ′ 

) coefficients. In our situation, the time 
resolution " t B is equal to 7.8 ms in cases (a) and (c), while in case (b) 
it is 62.5 ms. Thus, given the conditional probabilities P ( b 1 , τ 1 | b 2 , τ 2 ) 
for 0 < τ 1 < τ 2 , we have calculated these central moments directly 
from equation ( 7 ), using the obtained empirical data by counting 
the numbers N ( b ′ , b ) of occurrences of two fluctuations b ′ and b . 
Given that the errors of N ( b ′ , b ) might be simply determined by + 

N ( b ′ , b) , then, in a similar way, it is possible to calculate the 
errors for the conditional moments M ( k ) ( b , τ , τ ′ 

). Consequently, 
scaling these values according to equation ( 8 ), we have obtained 

the empirical KM coefficients. By examination of the M ( k ) ( b , τ , τ ′ 
) 

and D ( k ) ( b , τ ) coefficients, we can observe that they both exhibit the 
same dependence on b . 

The results of this analysis are shown in Fig. 4 , where on the 
upper part we have depicted the first-order coefficient depending 
on b , while at the bottom we have shown the second- and fourth- 
order coefficients depending on b , for all three cases (a), (b), and (c). 
Moreo v er, for each case, we hav e pro vided the calculated confidence 
intervals (error bars). It is demonstrated that the fit for D (1) ( b , τ ) 
coefficient is a linear function of b and for D (2) ( b , τ ) is a quadratic 
function of b , for " t B = 0.0078 s in cases (a) and (c), and " t B = 
0.0625 s in case (b). In fact, we have checked that the same fits 
are reasonable up to even 150 " t B for all three analysed cases. This 
means that in this instance, there should be no difficulties with fitting 
the polynomials for different " t B . 

As seen at the bottom part of Fig. 4 of cases (a) and (c), it is 
evident that the P a wula’s theorem is clearly satisfied. On the other 
hand, in case (b) it might be not so ob vious. F or instance, for b ≈
−6.2 nT, we can see that the value of D (4) ( b , τ ) is somewhat greater 
than zero. In this case, we can use the somewhat weaker version of 
this theorem, which states that it is sufficient to check if D (4) ( b , τ ) 
, [ D (2) ( b , τ )] 2 , for all b (see Risken 1996 ; Rinn et al. 2016 ). Thus, 
in this situation, we have [ D (2) ( b , τ )] 2 ≈ 1225, which is significantly 
larger than D (4) ( b , τ ) ≈ 1, for b ≈ −6.2 nT. Therefore, it is reasonable 
to conclude that the P a wula’s theorem is sufficiently well fulfiled in 
all of the analysed cases. Hence we can assume that the Markov 
process is described by the FP equation ( 9 ). 

In order to find the analytical solution of the FP equation ( 9 ), 
we have proposed certain approximations of the lowest order KM 
coef ficients. As pre viously discussed (see Fig. 4 ), it is straightforward 
that D (1) ( b , τ ) exhibits a linear dependence, whereas D (2) ( b , τ ) 
displays a quadratic dependence on b . Consequently, it is reasonable 
to assume the following parametrization: 
{ 

D (1) ( b, τ ) = −a 1 ( τ ) b, 
D (2) ( b, τ ) = a 2 ( τ ) + b 2 ( τ ) b 2 , (13) 

where the rele v ant parameters a 1 > 0, a 2 > 0, and b 2 > 0 depend on 
temporal scale τ > 0. Moreo v er, it appears that all of these parameters 
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Figure 3. Comparison of cuts through P ( b 1 , τ 1 | b 2 , τ 2 ) for the fixed value of the strength of the magnetic field total magnitude B = | B | in the SH: (a) just 
behind the BS, (b) inside the SH, and (c) near the MP, with increments b 2 with τ 1 = 0.02 s, τ ′ = 0.0278 s, and τ 2 = 0.0356 s in cases (a) and (c), and with τ 1 
= 0.2 s, τ ′ = 0.2625 s, and τ 2 = 0.325 s in case (b). 
exhibit a power-law dependence on temporal scale τ : 
 
  
  

a 1 ( τ ) = Aτα, 
a 2 ( τ ) = Bτβ , 
b 2 ( τ ) = Cτ γ , (14) 

where the values for all of the logarithmized parameters A, B, C ∈ R 
and the α, β, γ ∈ R are given in Table 1 . 

It is important to emphasize that the functional dependencies of 
the coefficients a 1 ( τ ), a 2 ( τ ), and b 2 ( τ ) on τ given by equation ( 14 ) 
are merely parametrizations of the empirical results. In fact, here 
power la ws hav e been selected, because the y hav e adequately 
described the observed values with sufficient accurac y. Nev ertheless, 
some alternative theoretical analyses may lead to slightly different 
functional dependence (see Renner et al. 2001 ). Admittedly, it turned 
out that the values of the fitted parameters can slightly be different 
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Figure 4. The first and second limited-size Kramers–Moyal (KM) coefficients determined by the magnetic field increments b for a total strength of magnetic 
field B = | B | in the SH: (a) just behind the BS, (b) inside the SH, and (c) near the MP. The dashed red lines show the best choice fits to the calculated values of 
D (1) ( b , τ ) and D (2) ( b , τ ) with D (4) ( b , τ ) = 0, according to the P a wula’s theorem. 
Table 1. The fitted parameters for power-law dependence of first- and second-order Kramers–Moyal (KM) coefficients of equations ( 13 ) and ( 14 ) as functions 
of scale τ . 
Case log 10 ( A ) α log 10 ( B ) β log 10 ( C ) γ

(a) 0.6989 ± 0.0225 −1.1191 ± 0.0089 −0.4946 ± 0.1259 1.1631 ± 0.0498 0.5854 ± 0.0706 −1.7325 ± 0.0279 
(b) 0.1837 ± 0.0139 −1.0417 ± 0.0100 −0.4666 ± 0.0160 0.5425 ± 0.0116 0.4183 ± 0.0163 −1.2233 ± 0.0118 
(c) 0.7791 ± 0.0079 −1.1055 ± 0.0057 −0.5893 ± 0.0126 1.0002 ± 0.0091 0.5011 ± 0.0274 −1.7646 ± 0.0199 
from those that fit exactly the solution of the FP equation ( 9 ). Renner 
et al. ( 2001 ) have also highlighted the asymmetry of the fit D (2) ( b , 
τ ) on b , which is also present in our analysis [especially in case (c), 
and to a lesser degree in case (a)]. 

The obtained fits to the MMS observations in the SH are depicted 
in Fig. 5 , for each case (a), (b), and (c), showing the dependence 
of KM coefficients parameters on scale τ > 0. Since our data 
contain a multitude of relatively low values and a few exceedingly 
large values, which would render a linear graph rather unreadable, 
instead of using a standard linear graph, we have decided to employ 
logarithmic scales for both the vertical and horizontal axes (so- 
called log –log plot). Such a procedure is rather straightforward. 
F or e xample, for the first row of equation ( 14 ), taking the logarithm 
of both sides one obtains log ( a 1 ( τ )) = α log ( τ ) + log ( A ), which is a 
special case of a linear function, with the exponent α corresponding 
to the slope of the line. The value of log ( A ) corresponds to the 
intercept of a log ( a 1 ( τ )) axis, while the log ( τ ) axis is intercepted at 
log A /( −α). We have opted for this approach to enhance the clarity of 
the presentation. Therefore, since we have used both the logarithmic 
scales the respective power laws appear as straight lines in Fig. 5 . 
Similarly, the graphical representations for all the parameters a 1 , 

b 1 , and b 2 of equations ( 13 ) and ( 14 ), which we have provided, 
are helpful for identifying correlations and determining respective 
constants A , B , C and α < 0, β > 0, γ < 0 in Table 1 (cf. Macek 
et al. 2023 ). 

After performing a careful analysis of the MMS magnetic field 
magnitude B data, our findings indicate that the power-law de- 
pendence is applicable for the values of: τ ! 100 " t B = 0.78 s 
in case (a); τ ! 150 " t B = 9.375 s in case (b); τ ! 50 " t B = 
0.39 s in case (c), and for some larger scales, say τ ! τG , the 
shapes of the probability density functions appear to be closer 
to Gaussian. Ho we ver, despite the satisfactory results obtained 
at these small kinetic scales, a more intricate functional depen- 
dence (possibly polynomial fits) is characteristic for much higher 
scales, in particular, in the inertial domain (Strumik & Macek 
2008a , b ). 

As a result of our investigations, we are able to obtain analytical 
stationary solutions p s ( x ) given by equation ( 12 ) following from 
the FP equation ( 9 ), which can be expressed by a continuous 
kappa distribution (also known as Pearson’s type VII distribution), 
which exhibits a deviation from the normal Gaussian distribution. 
The probability density function of this distribution is of a given 
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Figure 5. Linear dependence of the parameters a 1 , a 2 , b 2 (see equation 14 ) on the double logarithmic scale τ (log–log plot), for the magnetic field o v erall 
intensity B = | B | in the SH: (a) just behind the BS, (b) inside the SH, and (c) near the MP. The dashed red lines, with the standard error of the estimate illustrated 
by grey shade, show the best choice fits to the calculated values. 
form 
p s ( b) = N 0 [

1 + 1 
κ

(
b 
b 0 )2 ]κ , (15) 

where, for a 2 ( τ ) .= 0, b 0 ( τ ) .= 0, we have a shape parameter κ = 1 + 
a 1 ( τ )/[2 b 2 ( τ )] and b 2 0 = a 2 ( τ ) / [ b 2 ( τ ) + a 1 ( τ ) / 2], while N 0 = p s (0) 
satisfies the normalization ∫ ∞ 

−∞ p s ( b) d b = 1. By substituting p s ( b ) 
to this integral we find that 
N 0 = &( κ) 

& (κ − 1 
2 ) b 0 + 

πκ
, (16) 

where, this time, &( κ) = ∫ ∞ 
0 b κ−1 e −b d b, Re( κ) > 0 is a mathemat- 

ical gamma function (Euler integral of the second kind), as defined 
for all complex numbers with a positive real part. 

It is worth noting that kappa distribution, as represented by equa- 
tion ( 15 ), approaches the normal Gaussian (Maxwellian) distribution 
for large values of scaling parameter κ . To be precise, as κ → ∞ , 

the following well-known formula can approximately be satisfied: 
lim 

κ→∞ p s ( b) = N 0 exp (− b 2 
2 σ 2 ), (17) 

with the scaling parameter b 0 related to the standard deviation σ = 
b 0 / + 

2 . This time the parameter N 0 = p s (0) satisfies the elementary 
normalization N 0 = 1 

σ
+ 

2 π . 
The numerical results of fitting the empirical MMS data to 

the given distributions and determining the rele v ant parameters of 
equation ( 15 ) are as follows: κ = 1.5179, b 0 = 1.9745, and N 0 = 
0.68438 for B in case (a); κ = 1.3758, b 0 = 2.6955, and N 0 = 0.34375 
in case (b); and κ = 3.5215, b 0 = 1.7313, and N 0 = 1.1866 in case (c). 
These values of κ would correspond to the non-extensivity parameter 
of the generalized (Tsallis) entropy q = 1 − 1/ κ (e.g. Burlaga & 
Vi ̃ nas 2005 ). In our case this is given by q = a 1 ( τ ) 

a 1 ( τ ) + 2 b 2 ( τ ) and is equal 
to 0.341 in case (a), 0.273 in case (b), and 0.716 in case (c). The 
extracted values of the κ and q parameters provide robust measures 
of the departure of the system from equilibrium. We see that these 
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Figure 6. The empirical probability density functions (various continuous coloured lines) for a total strength of magnetic field B = | B | , which correspond to 
spectra in Fig. 1 , compared with the non-stationary (dashed lines) and the stationary (open circles) solutions of the FP equation, for various time-scales (shifted 
from bottom to top) τ = 0.0078, 0.04, 0.078, 0.12, 0.2, 0.39, and 0.78 s in cases (a) and (c), and τ = 0.0625, 0.3125, 0.625, 0.9375, 1.5625, 3.125, and 9.375 s 
in case (b). 
values are similar to q ∼ 0.5 for κ ∼ 2 reported for the Parker Solar 
Probe ( PSP ) data by Benella et al. ( 2022 ). 

Now, by using the system of equation ( 13 ) with equation ( 9 ), we 
hav e arriv ed at the following formula (Macek et al. 2023 ): 
(
a 2 ( τ ) + b 2 ( τ ) b 2 )∂ 2 P ( b, τ ) 

∂ b 2 + (a 1 ( τ ) + 4 b 2 ( τ ) )b ∂ P ( b, τ ) 
∂ b 

+ ∂ P ( b, τ ) 
∂ τ + (a 1 ( τ ) + 2 b 2 ( τ ) )P ( b, τ ) = 0 . (18) 

This implies that the FP equations ( 11 ) and ( 18 ) are expressed 
in terms of a second-order parabolic partial differential equation. 
Thus, through the implementation of the numerical Euler integration 
scheme, which has been verified for stationary solution ∂ P ( b,τ ) 

∂ τ = 0, 
we are able to successfully solve the non-stationary FP equation nu- 
merically. Our results are in line with those obtained by Rinn 
et al. ( 2016 ) using the statistical modelling package in programming 
language R . 

Fig. 6 shows the findings resulting from our analysis based on the 
MMS data. Here we compare the solutions of the FP equation ( 9 ) 
with the empirical probability density functions of P ( b , τ ): (a) near 
the BS; (b) inside the SH; and (c) near the MP for various scales τ
(not greater than τG ). The displayed plotted curves, in each case, are 
as follows: the stationary solution (denoted by open circles); the non- 
stationary solutions (marked with dashed lines); and the empirical 
PDFs (indicated with various coloured continuous lines). 

Further, in cases (a) and (c) the corresponding time scales are τ = 
0.0078, 0.04, 0.078, 0.12, 0.2, 0.39, and 0.78 s, whereas in case (b) 
these scales are τ = 0.0625, 0.3125, 0.625, 0.9375, 1.5625, 3.125, 
and 9.375 s. The corresponding curves are shifted in the vertical 
direction from bottom to top for even better clarity of presentation. 
It is also worth noting that we have used the semi-logarithmic scale 
τ , what is useful when dealing with data that co v ers a broad range 
of values. On this scale, the vertical scale is logarithmic (base 10) 

axis, which means that the separation between the ticks on the graph 
is proportional to the logarithm of PDF, while the horizontal b -axis 
is a standard linear scale, and the ticks are evenly spaced. 

What is important to note from this picture are the peaked 
leptokurtic shapes of PDFs and corresponding stationary solutions. 
Namely, in case (a) the peak (with large kurtosis) is present for scales 
up to ∼0.5 s; in case (b) up to about ∼3 s; and in case (c) up to ∼0.25 s. 
For these levels selected for each case the PDF becomes closer to 
Gaussian (i.e. approximately parabolic shape on the graph with the 
semi-logarithmic scales), as expected for large values of κ . In case 
(c) we can see more jumps in fluctuations, i.e. the curves are not so 
smooth. Fluctuations are quite evident in both the empirical curves 
and the theoretical solutions, so it seems that some numerical noise 
is present in the tails of the PDFs. Admittedly, reducing noise is a 
tricky issue, although the easiest way is to artificially smooth using 
the simple moving average. Therefore, we have tried this procedure 
for n = 1, 2, 3 steps and it has appeared that the n = 3 choice is 
sufficient. 

Fig. 7 depicts finally the probability density functions of fluctua- 
tions of the strength of the magnetic field b τ rescaled by the standard 
deviations σ ( b τ ) in the following way: 
b τ −→ b τ

σ ( b τ ) , (19) 
PDF ( b τ ) −→ σ ( b τ ) PDF ( b τ ) . (20) 
In this way, we can define a master curve for the shape of the 
PDFs. Again, we have used the logarithmic scale on the vertical 
axis. We also see that the rescaled curves are consistent with the 
stationary solutions of equation ( 15 ), as marked with open circles 
in Fig. 6 . It should be noted that all the curves in Fig. 7 are very 
close to each other for small scales. Ho we ver, for larger τ = 50 or 
100 " t B these shapes deviate from the master curve and naturally 
tend to the well-known Gaussian shape. We see that the shape of the 
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Figure 7. A collapse of probability density functions of b τ (compare Fig. 6 ), which are scaled by the corresponding standard deviations (see equations 19 
and 20 ), for the small time-scales τ stopping at approximately: τ ∼ 0.4 s in case (a); τ ∼ 2.0 s in case (b); and τ ∼ 0.25 s in case (c). 
PDFs obtained from the MMS data exhibits a global scale invariance 
in the SH up to scales of ∼2 s. A similar collapse has also been 
reported with the PSP data at subproton scales (Benella et al. 2022 ). 
Fig. 7 shows that fluctuations in the SH are described by a stochastic 
process. Admittedly, the mechanism of generation of these magnetic 
fluctuation at small kinetic scale is not known, but the results suggest 
some universal characteristics of the processes. An alternative point 
of view has recently been proposed by Carbone et al. ( 2022 ). 
5  C O N C L U S I O N S  
Following our studies in the space plasmas at large inertial scales 
(Strumik & Macek 2008a , b ), we have examined time series of the 
strength of magnetic fields in different regions of the Earth’s SH, 
where the spectrum steepens at subproton scales (Macek et al. 2018 ). 
With the highest resolution available on the MMS , the data samples 
just after the BS and near the MP are stationary and for somewhat 
lower resolution deep inside the SH the deviations from stationarity 
are small and could well be eliminated. Basically, in all these cases the 
stochastic fluctuations exhibit Markovian features. We have verified 
that the necessary CK condition is well satisfied, and the probability 
density functions are consistent with the solutions of this condition. 

In addition, the P a wula’s theorem is also well satisfied resulting 
in the FP equation reduced to drift and diffusion terms. Hence, this 
corresponds to the generalization of Ornstein–Uhlenbeck process. 
Further, the lowest KM coefficients have linear and quadratic 
dependence as functions of the magnetic field increments. In this 
way, the power-law distributions are well reco v ered throughout the 
entire SH. For some moderate scales we have the kappa distributions 
described by various peaked shapes with heavy tails. In particular, for 
large values of the kappa parameter these distributions are reduced 
to the normal Gaussian distribution. 

Similarly as for the PSP data, the probability density functions 
of the magnetic fields measured onboard the MMS rescaled by the 
respecti ve standard de viations exhibit a uni versal global scale invari- 
ance on kinetic scales, which is consistent with the stationary solution 
of the FP equation. We hope that all these results, especially those 

reported at small scales, are important for a better understanding of 
the physical mechanism go v erning turbulent systems in space and 
laboratory. 
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Testing for Markovian character of transfer of fluctuations in solar wind turbulence on kinetic scales
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We apply statistical analysis to search for processes responsible for turbulence in physical systems. In our
previous studies, we have shown that solar wind turbulence in the inertial range of large magnetohydrodynamic
scales exhibits Markov properties. We have recently extended this approach on much smaller kinetic scales.
Here we are testing for the Markovian character of stochastic processes in a kinetic regime based on magnetic
field and velocity fluctuations in the solar wind, measured onboard the Magnetospheric Multiscale (MMS)
mission: behind the bow shock, inside the magnetosheath, and near the magnetopause. We have verified that
the Chapman-Kolmogorov necessary conditions for Markov processes is satisfied for local transfer of energy
between the magnetic and velocity fields also on kinetic scales. We have confirmed that for magnetic fluctuations,
the first Kramers-Moyal coefficient is linear, while the second term is quadratic, corresponding to drift and
diffusion processes in the resulting Fokker-Planck equation. It means that magnetic self-similar turbulence is
described by generalized Ornstein-Uhlenbeck processes. We show that for the magnetic case, the Fokker-Planck
equation leads to the probability density functions of the kappa distributions, which exhibit global universal scale
invariance with a linear scaling and lack of intermittency. On the contrary, for velocity fluctuations, higher order
Kramers-Moyal coefficients should be taken into account and hence scale invariance is not observed. However,
the nonextensity parameter in Tsallis entropy provides a robust measure of the departure of the system from
equilibrium. The obtained results are important for a better understanding of the physical mechanism governing
turbulent systems in space and laboratory.

DOI: 10.1103/PhysRevE.110.025203

I. INTRODUCTION

Turbulence consists of phenomena that, notwithstanding
progress in numerical simulations, remain a challenge for
natural sciences, even for simple fluids [1]. This is all the
more so for magnetized plasma with magnetohydrodynamic
(including Hall) simulations, but physical mechanisms re-
sponsible for irregular behavior are still not transparent [2].
Fortunately, collisionless solar wind plasma can be considered
a natural laboratory for investigating these complex dynamical
systems [3]. In particular, fluctuations of magnetic fields play
an important role in space plasmas [e.g., 4,5]. The classical
spectrum of Kolmogorov [6] follows a power law with slope
exponent −5/3 for isotropic incompressible turbulence in or-
dinary fluids and Kraichnan [7] type spectrum with an even
smaller slope of −3/2 in magnetized media.

One should underline that in a Markov process, given an
initial probability distribution function (PDF), the transition

*Contact author: dwojcik@cbk.waw.pl
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and the published article’s title, journal citation, and DOI.

to the next stage can be fully determined. It is also interesting
that one can prove and demonstrate the existence of such
Markov processes based on experimental data [8]. Namely,
without relying on any assumptions or models for the under-
lying stochastic process, we are able to extract the equation of
Markov process directly from the measurements of times
series. Hence this Markov approach appears to be a bridge
between the statistical and dynamical analysis of complex
physical systems. There is a substantial evidence based on
statistical analysis that turbulence exhibits Markov properties
[8–13]. We have already proved that magnetic and velocity
fluctuations have Markovian features in the inertial range of
hydromagnetic scales [10,11]. In this case, the characteristic
spectrum appears to be roughly close to the standard Kol-
mogorov [6] power-law type with exponent −5/3 ≈ −1.67;
see Fig. 1 of Ref. [10].

On the other hand, the presence of the classical −5/3 or
−3/2 at small scales seems to be rather exceptional. In fact,
based on the highest millisecond time resolution data available
in the Magnetospheric Multiscale (MMS) mission, we have
noted clear breakpoints in the magnetic energy spectra in var-
ious regions of the Earth’s magnetosheath: (a) behind the bow
shock (BS), (b) inside the magnetosheath (SH), and (c) near
the magnetopause (MP) before leaving the magnetosheath.
Namely, we have observed that the magnetic spectrum steep-
ens at some critical points in the kinetic regime of scales: from
−5/2 above the ion gyrofrequency till −7/2 or even −11/2
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(or −16/3) above the Taylor-shifted frequency (related to the
electron skin depth of above 20–25 Hz), but for velocity spec-
trum similar to Kolmogorov [6]; see Ref. [14]. Some higher
slopes for the magnetic spectrum have also been observed
for an electron gyroscale [15] and for whistler turbulence
[e.g., 16,17].

Therefore, it is certainly interesting to investigate the
Markov property of turbulence outside the inertial region of
magnetized plasma on small scales, when the slopes are con-
sistent with kinetic theory [e.g., 18]. It should also be noted
that based on the measurements of magnetic field fluctuations
in the Earth’s magnetosheath gathered onboard the MMS
mission, we have recently extended this statistical analysis to
much smaller scales, where kinetic theory should be applied
[19,20]. Therefore, here we compare the characteristics of
both magnetic field and velocity fluctuations behind the bow
shock, inside the magnetosheath, and near the magnetopause.
In this paper, we present the results of our comparative
analysis for the following cases of transfer of fluctuations:
velocity-to-velocity, velocity-to-magnetic, and magnetic-to-
velocity, confirming the local character of the transfer of
cascading eddies. We also check whether the Fokker-Planck
(FP) equation is suitable for the processes responsible for
solar wind turbulence and whether their solutions agree with
experimental PDFs in selected regions of the magnetosheath.

Section II provides a brief description of the MMS mis-
sion and the analyzed data. Section III outlines mathematical
stochastic and statistical methods for processes in scale
(Sec. III A), including the necessary Chapman-Kolmogorov
(CK) condition in Sec. III B. This enables estimating the
Kramers-Moyal (KM) coefficients and checking the validity
of Pawula’s theorem leading to the FP equation in Sec. III C,
given the stationarity (Appendix A) of the detrended time se-
ries (Appendix B). The results of our analysis are presented in
Sec. IV, which demonstrates that at least for magnetic fluctu-
ations, the solutions of the FP equation are in good agreement
with empirical PDFs also on small kinetic scales, with a uni-
versal global scale invariance. Finally, Sec. V emphasizes the
significance of stochastic processes in relation to turbulence
in space plasmas, which exhibit Markovian features across the
kinetic domain.

II. DATA

The MMS mission was launched in 2015 to investigate
plasma processes in the magnetosphere and the solar wind
plasma especially on small scales [21]. Our recent analysis
has encompassed increments in each vector component of
the magnetic field, denoted as B = (Bx, By, Bz ), within the
Geocentric Solar Ecliptic (GSE) coordinate system, as dis-
played together with the corresponding spectra in Fig. 1 of
Ref. [19]. This vector field B have been derived from mea-
surements collected by the MMS 1 spacecraft, positioned just
beyond the bow shock region of the Earth. We have success-
fully demonstrated the presence of Markovian characteristics,
where the magnetic turbulence occurs, even at significantly
reduced kinetic scales. Interestingly, our observations also
reveal a remarkable uniformity in these Markovian features
across all components. We have also explored analogous
characteristics of the magnitude of this vector field, B = |B|,

in three different regions within the magnetosphere: (a) be-
hind the bow shock, (b) within the magnetosheath, and (c)
in proximity to the magnetopause, as depicted in Fig. 1 of
Ref. [20].

Consequently, we now aim to analyze the magnetic field
strength B = |B|, as well as the ion plasma velocity V = |V|
magnitudes inside the magnetosheath and in its close vicinity.
These regions as well as the spacecraft trajectory have been
depicted in Fig. 1 of Ref. [14]. To explore the potential global
scale invariance of the fluctuations, we have opted for the
same three time interval samples as those presented in Table 1
of Ref. [14]. For a magnetic field, in cases (a) near the bow
shock and (c) near the magnetopause, with time spans of
approximately 5 min and 1.8 min each, we have used BURST-
type observations obtained from the FluxGate Magnetometer
(FGM) sensor. This sensor has the highest resolution of
!tB = 7.8 ms (roughly 128 samples per second), providing
data sets with 37 856 and 13 959 data points, respectively.
Conversely, in case (b) between the bow shock and the mag-
netopause, we have the available FAST-survey type data at
substantially lower resolution of !tB = 62.5 ms (16 samples
per second). This data set consists of a much longer interval,
spanning 3.5 h, and contains a total of 198 717 data points.

In addition, in the analysis of ion plasma velocity magni-
tude V = |V|, we use data obtained through measurements
from the Dual Ions Spectrometer (DIS) instrument. These
measurements have a lower time resolution; specifically
within the BURST-type observations, the time resolution !tV
for ion measurements is set at 150 ms (about 6.5 samples per
second), and 30 ms (33 samples per second) for electrons. In
the FAST-survey mode, the instrument provides data snap-
shots at regular intervals of !tV = 4.5 s. All the data sets
considered in this study are available through Ref. [22], while
the complete description of the MMS spacecraft instruments
is specified in Ref. [21].

III. METHODS OF DATA ANALYSIS

As usual, the examination of statistical properties of a tur-
bulent system is performed across various scales. Kolmogorov
[6] has already postulated that the isotropic turbulence within
the inertial range should be linked to the flow velocity incre-
ment of τ . We also suppose that fluctuations occurring at a
larger scale τ shift to smaller and smaller scales, until the
dissipation scale is reached [19,20]. Therefore, here we em-
ploy the increments (fluctuations) of a given parameter, either
the characteristic magnetic field denoted by X := B = |B| or
the ion velocity denoted by X := V = |V |. Naturally, such
increments are typical scale-dependent complexity measures,
which characterize the behavior of a turbulent system at a
given time t and at each timescale (lag) τ , as given by

xτ (t ) := δx(t, τ ) = X (t + τ ) − X (t ), (1)

i.e., the difference in magnetic field or flow velocity between
points separated by a time interval τ .

In consequence, stochastic fluctuations can be perceived
as a stochastic process, governed by the N-point joint (tran-
sition) conditional probability density function (denoted as
cPDF), P(x1, τ1|x2, τ2; . . . ; xN , τN ), where P(xi, τi|x j, τ j ) =
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P(xi,τi;x j ,τ j )
P(x j ,τ j )

is a conditional PDF, with the joint PDF
P(xi, τi; x j, τ j ) and a marginal PDF P(x j, τ j ). By employing
these joint PDFs, the correlations between scales can also be
determined, which illustrates how the complexity is linked
across different scales. Nevertheless, the reasoning can easily
be inverted by applying the Bayes theorem by the equation,
for P(x j, τ j ) #= 0,

P(xi, τi|x j, τ j ) = P(x j, τ j |xi, τi )P(xi, τi )
P(x j, τ j )

. (2)

When τ is scaled by a factor λ ∈ R+, then it is said that the
increments are globally scale invariant, if scaling occurs with
the unique scaling exponent β, i.e., xλτ (t ) = λβxτ (t ), with β
independent of scale τ .

A. Process in scale

The power spectral densities (PSDs) (as shown in the lower
parts of Figs. 2–4 in Ref. [14]) serve as a statistic to scrutinize
the scale-dependent behavior of turbulent fluctuations and are
analogous to the examination of the autocorrelation function.
In this study, we explore a somewhat expanded application
of stochastic processes by means of the Markovian approach.
Essentially, the stochastic process is said to be Markovian if,
for 0 < τ1 < τ2 < · · · < τN , it holds that

P(x1, τ1|x2, τ2) = P(x1, τ1|x2, τ2; . . . ; xN , τN ). (3)

In particular, if the data satisfy the Markov condition from
larger to smaller scales, this condition is also satisfied in
the reverse direction from smaller to larger scales, as stated
previously by the Bayes theorem in Eq. (2); see Ref. [8].

B. Chapman-Kolmogorov condition and locality

The generalization of Eq. (3) is called the Chapman-
Kolmogorov (CK) equation (condition),

P(x1, τ1|x2, τ2) =
∫ +∞

−∞
P(x1, τ1|x′, τ ′)P(x′, τ ′|x2, τ2)dx′,

(4)

where (τ1, τ
′, τ2) is a set of timescale parameters, such as

τ1 < τ ′ < τ2. We have checked that it is satisfied for the
Markov turbulence on inertial scales [10]. Importantly, this
serves as the very essential requirement for a stochastic pro-
cess to exhibit Markovian properties.

If the condition of Eq. (4) is fulfilled, then the transition
PDF from the scale τ2 to τ1 can be decomposed into two
sequential transitions: first from τ2 to τ ′, and next from τ ′

to τ1. Hence, in the context of a turbulent cascade, fulfill-
ment of this condition for all considered (τ1, τ

′, τ2) implies
the existence of a local transfer mechanism in the cascade.
When considering fluctuations in time, one can imply that
the transfer process is local in scale. Nonetheless, if the root
mean square (RMS) (in a discrete case, xRMS = [ 1

n

∑
i x2

i ]1/2)
of ion velocity increments is considerably smaller than the
mean velocity 〈vsw〉 of the solar wind flow, under Taylor’s
hypothesis [23], then temporal variations at a fixed position
are understood as spatial variations. In this scenario, the local
transfer in scale can be understood as being directly linked to
the local transfer in wave-vector space.

We also aim to examine the interactions between ion ve-
locity and magnetic field modes, which provide input into
the transfer of energy between these two quantities. These
interactions should be interpreted as a statistical dependence
between bτ (t, τ ) and vτ (t, τ ). To incorporate this transfer
of fluctuations between different quantities, we introduce the
generalized CK condition as

P(x1, τ1|y2, τ2) =
∫ +∞

−∞
P(x1, τ1|y′, τ ′)P(y′, τ ′|y2, τ2)dy′

∼
∫ +∞

−∞
P(x1, τ1|x′, τ ′)P(x′, τ ′|y2, τ2)dx′,

(5)

where the intermediate-scale quantity varies, but yields very
similar results, allowing for the use of only one version of
Eq. (5). This also enables us to investigate whether the transfer
of fluctuations between two quantities exhibits a local or non-
local character. Specifically, if the empirical cPDFs align with
those calculated from Eq. (5), then the transfer of fluctuations
can be broken down into smaller steps (with the intermediate-
scale τ ′), implying that the transfer in the cascade has a local
character.

Consequently, the differential form of the CK equa-
tion (4) is called the Kramers-Moyal (KM) expansion and is
given by

−∂P(xτ , τ |x′
τ , τ

′)
∂τ

=
∞∑

k=1

(
− ∂

∂xτ

)k

× [D(k)(xτ , τ )P(xτ , τ |x′
τ , τ

′)], (6)

where the coefficients D(k)(xτ , τ ), called Kramers-Moyal
(KM) coefficients, are given by

D(k)(xτ , τ ) = 1
k!

lim
τ+τ ′

1
τ − τ ′ M

(k)(xτ , τ, τ
′), (7)

with

M (k)(xτ , τ, τ
′) =

∫ +∞

−∞
(x′

τ − xτ )kP(x′
τ , τ

′|xτ , τ )dx′
τ , (8)

which can be obtained by extrapolation (piecewise linear re-
gression model). Equations (7) and (8) show that the drift
and diffusion coefficients can be expressed in the form of the
first and second moments of the cPDFs P(x′

τ , τ
′|xτ , τ ) in the

small time interval limit. In this way, one can find the KM
coefficients for the increments xτ .

In general, the KM expansion (6) involves infinitely many
evolution terms. Often the first- and second-order KM co-
efficients are different from zero, and hence statistically
significant, while the third-, fourth-, and higher-order coef-
ficients usually exhibit a tendency to gradually approach zero.
The important Pawula’s theorem [24] states that if the fourth-
order KM coefficient is equal to zero, then D(k)(xτ , τ ) = 0
for k ! 3, and the series is limited to the second
order.

C. Fokker-Planck and Langevin equations

In this case, the differential KM expansion (6) is presented
in a reduced form called the Fokker-Planck (FP) equation,
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determining the evolution of the transition probability [24]:

−∂P(xτ , τ |x′
τ , τ

′)
∂τ

=
[
− ∂

∂xτ

D(1)(xτ , τ ) + ∂2

∂x2
τ

D(2)(xτ , τ )
]

× P(xτ , τ |x′
τ , τ

′), (9)

where the first and second terms are responsible for the drift
and diffusion processes, respectively. One should note the neg-
ative sign which arises from the direction of time evolution,
moving from larger to smaller scales, as we have previously
assumed.

Consequently, a complementary approach with the follow-
ing Langevin equation (using the Itô’s definition) emerges:

−∂xτ

∂τ
= D(1)(xτ , τ ) +

√
D(2)(xτ , τ ) '(τ ), (10)

for the δ-correlated Gaussian white noise '(τ ), which satisfies
the following normalization conditions: mean 〈'(τ )〉 = 0 and
a correlation 〈'(τ )'(τ ′)〉 = 2δ(τ − τ ′), where δ is a Dirac
delta function [13]. The stochastic nature of the fluctuations
across different scales is encapsulated by the diffusion coeffi-
cient within the Langevin framework.

Equivalently, Langevin equation (10) can be rewritten in a
more natural form of stochastic differential equation (SDE),

dxτ (τ ) = h(xτ , τ )dτ + g(xτ , τ )dW (τ ), (11)

where, again, h(xτ , τ ) = D(1)(xτ , τ ) is a drift term and
g(xτ , τ ) =

√
D(2)(xτ , τ ) modulates a diffusion term. Here,

{W (τ ) | τ ! 0} is a scale-related Wiener process (Brownian
motion). Generally, we say that {W (τ )} is a Brownian motion
in scale if the following conditions are satisfied: (i) W (τ =
0) = 0, (ii) mean <W (τ )> = 0 and variance Var[W (τ )] =
σ 2τ , and (iii) {W (τ )} has stationary and independent in-
crements. Note that the Markov property is implied by the
presence of independent increments. There is an equivalence
between the FP and Langevin dynamics, in a way that the PDF
of a stochastic process whose dynamics is governed by the
Langevin equation satisfies the FP given by Eq. (9); see the
proof in Ref. [25].

Notably, any process xτ (τ ) generated with Eq. (11) is a
continuous diffusion process. Such a diffusion process refers
to a continuous-time stochastic process with (almost surely)
continuous sample paths having the Markov property. Actu-
ally, a fundamental example of a continuous diffusion process
is a Wiener process. Moreover, the process xτ (τ ) generated
by Eq. (11) also satisfies the Lipschitz condition, i.e., for any
function f : R + R, and x1, x2 ∈ R, there exists a constant
ε > 0 such that | f (x1) − f (x2)| " ε |x1 − x2|.

On the other hand, in terms of the probabilities
P : F + R+, where F is an event space, we can say that the
continuous process xτ (τ ), generated by the Langevin equa-
tion, fulfills a continuity Lindenberg’s (Dynkin’s) condition,
if, for any ε > 0,

lim
τ+0+

P [|xτ (τ )| > ε |X (τ ) = x]
τ

= 0. (12)

Deviation from this continuity criterion implies a lack of
smoothness of the process, signifying the presence of discon-
tinuous events such as jumps. Consequently, for the process
with nonvanishing higher-order KM coefficients, the Linden-
berg’s continuity condition of Eq. (12) can be rewritten as a

continuity condition in terms of conditional moments M (k),
for k ! 0 and any ε > 0,

lim
τ+0+

P [|xτ (τ )| > ε |X (τ ) = x]
τ

" M (k)(xτ , τ )
εk τ

, (13)

which can be proven using the Chebyshev inequality; see [26].
The Langevin equation (11) [characterized by vanishing

higher-order (k ! 3) KM coefficients] generates continuous
sample paths. However, complex systems often manifest non-
stationary dynamics, leading to discontinuous sample paths
in the corresponding time series [25]. This poses a challenge
when employing the Langevin approach. Apparently, distinct
features such as heavy tails or some abrupt large jumps
may imply the existence of discontinuous jump components
[27]. Models with jumps have been employed to capture
this randomness [28]. Their primary challenge yet involves
estimating parameters defining jumps and their distribution
sizes, along with addressing path discontinuities in processes
sampled at discrete intervals. Remarkably, this nonparametric
estimation enables one to examine potential nonlinearities in
drift, diffusion, and the intensity of the discontinuous jump
component. This component can be related to the nonvan-
ishing higher-order KM coefficients. Therefore, a SDE that
describes a stochastic jump-diffusion process is of the follow-
ing form [see [27]]:

dxτ (τ ) = h(xτ , τ )dτ + g(xτ , τ )dW (τ ) + ξ (xτ , τ ) dJ (τ ),

(14)

where J (τ ) represents a timescale-homogeneous Poisson
jump process, with a jump rate λ(xτ ), a size ξ (xτ , τ ) ∼
N (0, σ 2

ξ ), and a jump amplitude σ 2
ξ . In this process, the dif-

fusion coefficient and a jump characteristics contribute to the
second-order KM coefficient. Notably, all unknown functions
and coefficients can be directly derived from the empirical
data. This approach is suitable for both stationary and nonsta-
tionary time series, where discontinuous jump components are
present, which would need further investigation; cf. Ref. [27].

IV. RESULTS

We focus on Markovian characteristics at much finer mil-
lisecond scales. Certainly, this allows one to extend our
analysis beyond the inertial range [10,11], with a particular
emphasis on magnetic field fluctuations, as has already been
analyzed in Refs. [19,20].

In our endeavor to better understand the turbulence mech-
anisms within space plasma, we analyze fluctuations not only
of the magnetic field B = |B|, but also of ion velocity V =
|V|. Namely, we have now applied this approach to the small-
scale, in cases (a) and (c), and the medium-scale, in case (b),
fluctuations of B, while for V fluctuations, to medium scales
in cases (a) and (c), and a higher scale in case (b).

A. Stationarity

It is necessary to validate the stationarity of the data time
series under investigation, as described in Sec. III A. To eval-
uate this feature, we have used the statistical tests, namely,
the Augmented Dickey-Fuller (ADF) test [29], as well as the
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Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [30], as de-
scribed in Appendix A.

Using the ADF test, we have determined that in cases (a)
and (b), for both variables B = |B| and V = |V|, respectively,
the corresponding p values are less than 0.01. This signi-
fies the rejection of the null hypothesis. Consequently, the
time series of magnetic field strength and ion velocity can
be considered stationary. Nevertheless, for case (c), where
the dataset is substantially smaller for both variables, the
computed p values equal 0.154 and 0.3705, for B and V , re-
spectively, indicating the inability to reject the null hypothesis.
These values point towards the presence of some nonstation-
ary component in the time series, implying a time-dependent
structure with possibly fluctuating variance over time. Using
the differencing method (lag-1 difference), we could get rid of
this nonstationarity. Then the ADF test results in a p value of
<0.01, which leads again to the rejection of the null hypothe-
sis.

Next, we have also employed the KPSS test on both vari-
ables B = |B| and V = |V|. It turned out that in all of the
analyzed cases (a)–(c), the resulting p values are <0.01, which
means that we reject the null hypothesis. This implies that our
time series does have a unit root [which was already confirmed
by the ADF test in case (c)], and it is rather nonstationary.
In such a case, when the ADF test concludes stationarity,
while the KPSS test suggests nonstationarity (presence of a
unit root), this means that the series are difference stationary.
Hence, to achieve stationarity, a straightforward lag-1 dif-
ferentiation is usually sufficient. Indeed, after applying this
operation, the resulting p values are greater than 0.1 in all
of the cases, demonstrating that we do not have sufficient
evidence to reject the null hypothesis. Consequently, this sig-
nifies that both time series of magnetic field strength B = |B|
and ion velocity V = |V| can be considered stationary.

B. Chapman-Kolmogorov condition

The basis of adopting the Markov analysis relies on the
assumption that the data follow Markovian characteristics.
This can be subjected to direct verification through the def-
inition given by Eq. (4). To establish the applicability of a
Markov processes framework in our context, we can check the
required CK condition, using a method described in Sec. III B.
Although, to validate this necessary condition, we briefly
discuss the integration limits of the right-hand side of this
equation, which formally extends over the set of real num-
bers. We see that (τ1, τ

′, τ2) represents a set of fluctuation
scales.

Note that τ1 has been chosen to be approximately three
times greater than !tB, which determines a lower-bound scale
in relation to the Einstein-Markov scale [31]. This lower
bound represents a finite step size introducing a coarse-
grained structure to the evolution of τ across scales, from the
largest to the smallest scale. As a result, the Markov process
can be interpreted as a stochastic model that effectively repre-
sents this continuous coarse-grained process.

Within Eq. (4), the integration is performed over x′ rep-
resenting fluctuations at scale τ ′. In the calculations, it is
possible to determine bounds for x′ based on various quantiles,
such as the 5% and 95%, or more robustly, the 1% and 99%

quantiles, or even more rigorously. These values are derived
from time series at timescales τ ′. Formally, for a sufficiently
large sample, the result of the integration should remain con-
sistent, independently of the chosen limits. This implies that
the chosen limits should be properly extensive. By using such
a parametric case study, a consistent plateau can be identified
for the well-defined limits of the integration.

Hence, using a methodology described in Sec. III B, we
have obtained the empirical cPDFs from the data, denoted as
PE (x1, τ1|x2, τ2), as presented in Figs. 1–3, plotted as continu-
ous contours with the matching various colors (a) near the bow
shock, (b) inside the magnetosheath, and (c) near the magne-
topause. They are compared there with the cPDFs, which are
solutions of the CK equation (4), labeled as PCK(x1, τ1|x2, τ2),
and shown as the black dashed contours. Such a comparison is
done under the specific parameter set (τ1, τ

′, τ2), such as τ ′ =
τ1 + !tX , τ2 = τ1 + 2!tX , for τ1 < τ ′ < τ2. Here, !tX again
denotes a sampling time encompassing each variable B and V ,
for cases (a)–(c), which are comprehensively described below.
Typically, the contour graphs provide a two-dimensional (2D)
representation of 3D data.

The results of this comparative analysis for magnetic field
increments xi = bi ∀i performed at various kinetic scales are
displayed in Fig. 2 of Ref. [20], as compared with Fig. 1
of Ref. [11] for the region of large magnetohydrodynamic
(MHD) scales. The analogous comparative analysis is now
seen in Fig. 1 using ion velocity increments xi = vi at various
scales, compared with Fig. 2 of Ref. [11]. More precisely,
in cases (a) and (c), with lower time separation !tV =
0.15 s, we have taken into account the following scales: τ1 =
0.3 s, τ ′ = τ1 + !tV = 0.45 s, and τ2 = τ1 + 2!tV = 0.6 s.
In case (b), with much lower resolution !tV = 4.5 s, we
have used τ1 = 9 s, τ ′ = τ1 + !tV = 13.5 s, and τ2 = τ1 +
2!tV = 18 s. Again, the isolines shown in the graphs indicate
decreasing levels of cPDFs for velocity increments vi from
the central region of each plot. They are as follows: in case
(a), 0.4, 0.16, 0.09, 0.04, 0.02, 0.01, and 0.006; in case (b),
0.2, 0.031, 0.023, 0.015, 0.009, 0.005, 0.003; while in case
(c), 0.4, 0.145, 0.09, 0.07, 0.04, 0.03, and 0.015. We observe
that in the central parts, the contour lines corresponding to
PE ( · | · ) and PCK( · | · ) overlap quite well in cases (a) and (b),
and somewhat less in case (c). We see pronounced irregulari-
ties caused by the limited data available for estimating PDFs
near the edges of the plots, especially in case (c). Hence, in
such regions, the explicit verification of the suitability of the
CK equation (4) might not be directly possible. Nevertheless,
towards the central parts of the contours, we can observe that
the CK equation (4) is sufficiently well fulfilled in the first two
cases, and approximately satisfied in the third case.

In addition, to analyze the superposed locality of fluctua-
tions, as thoroughly described in Sec. III B, we have derived
the empirical cPDFs PE (x1, τ1|y2, τ2) and PE (y1, τ1|x2, τ2), as
well as the solutions of a generalized CK equation (5), given
by cPDFs PCK(x1, τ1|y2, τ2) and PCK(y1, τ1|x2, τ2), respec-
tively. One should note that the time stamps of the resolution
for the B and V variables for in situ measurements by the
MMS should receive greater attention. We have noticed slight
shifts in the time stamps, but they are very comparable (up
to several milliseconds), and thus we have concluded that
these shifts are negligible. To begin with, to achieve an
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FIG. 1. A comparison between the experimental contours of cPDFs, PE (v1, τ1|v2, τ2) (depicted as solid various-colored curves), and the
reconstructed CK contours of cPDFs, PCK(v1, τ1|v2, τ2) (shown as dashed black curves), for different timescales using the CK condition (4).
Data from the MMS mission for ion velocity V = |V|, in three cases: (a) near the bow shock, (b) inside the magnetosheath, and (c) near the
magnetopause.

“equilibrium” between the two analyzed variables, we have
employed methods of upsampling (linear interpolation) and
downsampling (decimation) of data, as elaborated in Ap-
pendix B.

Namely, in case (a), with !tB = 0.0078 s and !tV =
0.15 s, we have performed a downsampling on the magnetic
field variable to obtain a consistent time resolution of !tBV ∼
0.15 s, resulting in ∼2000 data points. In turn, in case (b),
with !tB = 0.0625 s and !tV = 4.5 s, because of the risk
of substantial loss of information through a straightforward
downsampling (loss of too many, e.g., 1 per 72 observations),
we have opted for linear interpolation on the variable of
ion velocity V joined with downsampling on magnetic field
variable B. This has yielded a time resolution of roughly
!tBV ∼ 2.25 s, with a dataset consisting of 5500 points.
To enhance the clarity of the results in case (c), we have

applied the same joint methodology to have a longer (initially
severely constrained) variable of velocity V . This results in
a satisfactory time resolution of !tBV ∼ 0.075 s, with about
1500 data points, that facilitates a generation of the specific
set of scale parameters (τ1, τ

′, τ2). Similar to the previous
one-variable cases, τ1 = 0.3 s in case (a), τ1 = 4.5 s in case
(b), and τ1 = 0.15 s in case (c), while τ ′ = τ1 + !tBV and
τ2 = τ1 + 2!tBV .

Since the exchange between magnetic and kinetic energy is
through magnetic field line stretching, expressed as b · ∇v · b,
then physically the intermediate-scale quantities are x′ = b′

and y′ = b′ in Eq. (5) in the transfer velocity-to-magnetic
field (x1 = b1 and y2 = v2) and magnetic-to-velocity field
(x1 = v1 and y2 = b2), respectively. Although both x′ and
y′ as intermediate-scale quantities are mathematically rigor-
ous, only one selected version of Eq. (5) should be used,

v2 [km s]

b 1
 [n

T
]

-20 -10 0 10 20

-10

-5

0

5

10

v2 [km s]

b 1
 [n

T
]

-60 -40 -20 0 20 40 60

-20

-10

0

10

20

v2 [km s]

b 1
 [n

T
]

-10 -5 0 5 10

-3

-2

-1

0

1

2

3

FIG. 2. A comparison between the experimental contours of cPDFs, PE (b1, τ1|v2, τ2) (depicted as solid various-colored curves), and the
reconstructed CK contours of cPDFs, PCK(b1, τ1|v2, τ2) (shown as dashed black curves), for different timescales using the generalized CK
condition (5) with x′ = b′. Data from the MMS mission for a V to B transfer of fluctuations, in the same three analyzed cases.
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FIG. 3. A comparison between the experimental contours of cPDFs, PE (v1, τ1|b2, τ2) (depicted as solid various-colored curves), and the
reconstructed CK contours of cPDFs, PCK(v1, τ1|b2, τ2 ) (shown as dashed black curves), for different timescales using the generalized CK
condition (5) with y′ = b′. Data from the MMS mission for a B to V transfer of fluctuations, in the same three analyzed cases.

as mentioned in Sec. III B. The results for both cases of the
comparison of the exchange of energy between the velocity
and the magnetic fields on kinetic scales are presented as
contours in Figs. 2 and 3, correspondingly.

Further, the isolines displayed in the graphs represent de-
creasing levels of the cPDFs for magnetic field increments
bi, from the center of the plots. For the velocity-to-magnetic
case, we show the isolines originating from the middle of the
plots set as follows: 0.3, 0.14, 0.07, 0.045, 0.035, 0.025, 0.018
in case (a); 0.2, 0.055, 0.03, 0.017, 0.011, 0.007, 0.004 in
case (b); and 0.4, 0.25, 0.16, 0.14, 0.11, 0.09, 0.06 in case (c).
Since the energy released from the magnetic field should be
equal to the energy obtained by the velocity field, the transfer
of velocity-to-magnetic fluctuation should be approximately
the same (with opposite signs) as the magnetic-to-velocity
exchange, similarly to what has also been computed for MHD
scales; see Figs. 5 and 6 in Ref. [11].

Figures 2 and 3 show that both experimental and theo-
retical contours align quite well in the central parts and to a
slightly lesser extent in the outer regions of cases (a) and (b).
However, these fits are less pronounced than in the transfer
of fluctuations of the same quantity. Additionally, in case (c),
one sees a discrepancy even in the center parts, especially in
the case of magnetic-to-velocity transfer. We think that these
irregularities are primarily related to the limited amount of
the data available here. Anyway, these observations suggest
that the fulfillment of the generalized CK equation (5) is
rather tangible in cases (a) and (b), but admittedly may not
be conclusive in case (c). Please note the gray vertical dashed
lines in each contour plot (Figs. 1–3) across all investigated
cases.

Further, to provide supplementary validation of the pro-
posed CK condition (4) and the generalized CK condition
(5), we have also examined the cross sections through the
3D histograms of the cPDF for specific increments xi = vi
or xi = bi, for the respective vi–vi, bi–vi, and vi–bi transfers
of fluctuations, as illustrated in Figs. 4–6, respectively. The
approximated (discretized) fixed values of each parameter are
given at the uppermost part of each plot. As can be seen, the

slices (cross sections) through the empirical cPDFs, PE ( · | · ),
plotted as colored filled circles, align quite well with the slices
through the theoretical curves, PCK( · | · ), shown with black
dashed curves, yielding a very good agreement with the CK
condition of Eq. (5) in all of the examined cases; cf. [20],
Fig. 3 (for the transfer of magnetic-to-magnetic fluctuations,
xi = bi and x′

i = bi). The slight deviations in tails observed
on a few graphs can be attributed to the limited data used for
the unsupervised binning method (see Appendix B). For the
fixed values of b2 < 0 (nT) and b2 > 0 (nT), we see (on top
of each plot) a slight shift and truncation of the PDFs, which
is prominent especially in cases (a) and (b), and to a lesser
degree, in case (c).

It is important to highlight that our extensive comparisons
across various parameter sets (τ1, τ

′, τ2) have yielded con-
vincing results. In particular, we have found that the CK
condition (4) holds true for xτ = bτ as τ increases [20], Fig. 3.
When !tB attains somewhat higher values, indicating that τ2
becomes sufficiently large, the CK condition remains satis-
fied, but sometimes both cPDFs no longer exhibit dependence
on b2. Nevertheless, this broader insight in analyzed space re-
gions suggests that the turbulent cascade usually has Markov
properties also on kinetic scales.

Admittedly, in Fig. 4, for the velocity-to-velocity transfer
fluctuations, we see that the alignment is slightly less clear
than that observed in the case of magnetic-to-magnetic fluc-
tuations in Fig. 3 of Ref. [20]. The most accurate fits are
seen in case (a), but minor deviations are encountered in the
tails of each PDF. Rather good fits are observed in case (b),
though numerical noise is present even in the central peaked
part of each PDF. Admittedly, the least precise fitting emerges
in case (c). In general, for fixed values of v2 < 0 (km s−1)
and v2 > 0 (km s−1) (see top of each plot), the shapes of the
PDFs can exhibit some asymmetry, which may be attributed
to higher moments of PDF in Eq. (8). In the former case,
the obtained PDF shape seems to be somewhat right-skewed,
while in the latter situation, a tendency to a left-skewed shape
is rather apparent. Additionally, the shapes in cases (a) and (b)
exhibit greater peakedness, whereas in case (c), we observe
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FIG. 4. Comparison of the experimental cross sections through the cPDFs PE (v1, τ1|v2, τ2) (colored filled circles) and PCK(v1, τ1|v2, τ2)
(black dashed lines), under fixed ion velocity fluctuation v2 (on top of each graph) for cases (a) behind the bow shock, (b) inside the
magnetosheath, and (c) near the magnetopause. The parameter set (τ1, τ

′, τ2) is in agreement with that in Fig. 1.

somewhat smoother shapes. Apart from that, both of the first
PDFs match quite well; also in case (c), the fits are fairly
acceptable.

It is also relevant to discuss the extent to which the CK
condition given by Eq. (4) is satisfied for the xi = vi vari-
able. After a comprehensive analysis involving numerous
parameter sets (τ1, τ

′, τ2) akin to the previous scenario, the
following observations emerge. In case (a), this condition
is approximately well satisfied up to 50!tV = 7.5 s, corre-
sponding to τ2 = τ1 + 50!tV = 7.8 s. Next, in case (b), it

remains valid for scales up to 30!tV = 135 s, which gives
τ2 = τ1 + 30!tV = 144 s. In case (c), it is somewhat fulfilled,
albeit up to 5!tV = 0.75 s, namely, τ2 = τ1 + 5!tV = 1.05 s.
Once again, our observations affirm the presence of Marko-
vian properties within the turbulent cascade as the analysis is
able to look at the domain of kinetic scales.

Afterwards, we consider the transfer of fluctuations be-
tween the two quantities: velocity-to-magnetic and magnetic-
to-velocity. Here we present the cross sections on kinetic
scales in Figs. 5 and 6, respectively, which should be
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FIG. 5. Comparison of the experimental cross sections through the cPDFs PE (b1, τ1|v2, τ2) (colored filled circles) and PCK(b1, τ1|v2, τ2)
(black dashed lines), under fixed ion velocity fluctuation v2 (on top of each graph) for cases (a) behind the bow shock, (b) inside the
magnetosheath, and (c) near the magnetopause. The parameter set (τ1, τ

′, τ2) is in agreement with that in Fig. 2.

compared with the corresponding Figs. 7 and 8 of Ref. [11]
for MHD scales. Notably, the circles representing empirical
cPDFs exhibit a reasonable fit with the slices through the
solutions of the generalized CK of Eq. (5). The most accurate
fit is seen in case (b), with a slightly less precise fit in case (a),
while the most significant deviations are apparent in case (c).
The deviations in the tails are present, which can be attributed
to some outliers, which are more challenging to understand
and potentially remove in this joint method for limited data.

In addition, slight shifting and truncation of the PDFs are
observed, in particular in case (c).

This analysis suggests that the fulfillment of the appropri-
ate CK condition (5) is at least approximately satisfied for the
smallest considered range of scales available for testing. Our
results provide supporting evidence that the Markov approach
can be applied for the description of the turbulent cascade in
solar wind turbulence. Therefore, the assumption of locality
of the energy transfer in wave-vector space is valid, and thus
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FIG. 6. Comparison of the experimental cross sections through the cPDFs PE (v1, τ1|b2, τ2) (colored filled circles) and PCK(v1, τ1|b2, τ2)
(black dashed lines), under fixed magnetic field fluctuation b2 (on top of each graph) for cases (a) behind the bow shock, (b) inside the
magnetosheath, and (c) near the magnetopause. The parameter set (τ1, τ

′, τ2) is in agreement with that in Fig. 3.

our analysis extends the findings in the near-Earth space envi-
ronment to small kinetic scales.

C. Drift and diffusion coefficients

This further allows estimating the KM coefficients and
checking the validity of Pawula’s theorem as discussed in
Sec. III C. Naturally, we have determined the KM coefficients
of orders k = 1, 2, and 4, defined by Eq. (7). These coeffi-
cients bear crucial importance for the validation of Pawula’s
theorem, described in Sec. III B. The conventional approach

employed for the determination of these coefficients involves
the application of an extrapolation technique, for instance, the
piecewise linear regression (mentioned in Sec. III B), to esti-
mate the corresponding limits as τ + τ ′. It is important in this
regard to recall the Einstein-Markov scale, below which the
process is no longer Markovian. In our case, this derived scale
is not too high, and the sampling rate is adequately high, thus
not significantly affecting the determination of the KM coef-
ficients. However, for M (k)(xτ , τ, τ

′) as a function of τ ′, we
have noticed a consistent deviation from a linear fit for small
values of τ ′ in Eq. (8), attributed to the Einstein-Markov scale
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FIG. 7. The first and second Kramers-Moyal coefficients as functions of magnetic field increments bτ , for the magnetic field strength
B = |B|. Dashed red lines represent the optimal fits to the empirical values of D(1)(bτ , τ ) and D(2)(bτ , τ ), while D(4)(bτ , τ ) ≈ 0 (brown dots),
maintaining the condition in agreement with Pawula’s theorem, taken from Ref. [20].

(not shown here) that ought to be omitted when calculating
the limits; see, e.g., [8], Fig. 14 and [12], Fig. 42. Therefore,
we have directly computed these scaled central moments, us-
ing the obtained empirical cPDFs P(x1, τ1|x2, τ2), for 0 < τ1
< τ2. This systematic approach has yielded the empirical KM
coefficients D(k)(xτ , τ ) obtained using point-by-point extrap-
olation of the M (k)(xτ , τ, τ

′) coefficients.
In addition, since the errors of the number of occur-

rences N (x′
τ , xτ ) of fluctuations x′

τ and xτ can be resolved by√
N (x′

τ , xτ ), we have used an analogous reasoning to deter-
mine the errors of the scaled conditional moments D(k)(xτ , τ ),
[see, e.g., 8]. Consequently, Figs. 7 and 8 provide the first-
order coefficient (in the upper segment), and the second- and
fourth-order coefficients (in the lower segment) for bτ and vτ

fluctuations, respectively. These graphs cover all three cases
(a), (b), and (c), which are distinguished, as previously shown,
by various colors. For each case, we also present the calcu-
lated confidence intervals.

The results depicted in Fig. 7 reveal a distinct pattern: the
fit for the drift D(1)(bτ , τ ) adopts a linear relationship with
respect to bτ , with negative slope, while diffusion D(2)(bτ , τ )
stands as a second-degree (parabolic) function of bτ . This
behavior is consistent for !tB = 0.0078 s in cases (a) and
(c), and !tB = 0.0625 s in case (b). Remarkably, our com-
prehensive analysis extends this fitting to significantly larger
scales, up to 150!tB, corresponding to τ2 = τ1 + 150!tB for
all three cases. This robust consistency suggests that fitting
to lower-order polynomials for different !tB is possible on
kinetic scales.

We see that for increments of the magnetic field B, while
the drift and diffusion coefficients remain nonvanishing, the
fourth coefficient (brown dots) is approximately zero for
all cases. Thus, the KM expansion of Eq. (6) truncates at
k = 2 in cases (a)–(c), hence reducing to the FP equation.
This results from Pawula’s theorem, also ensuring the sta-
tistical continuity of the analyzed process. Therefore, the
Markov process can effectively be described by this FP equa-
tion (9) (or, alternatively, by the Langevin equation (10); see,
e.g., [32]).

In the corresponding Fig. 8, we can notice a pattern sim-
ilar to that in Fig. 7, but with significantly less pronounced
alignment. The fit for the drift D(1)(vτ , τ ) follows a clearly
discernible linear relationship with respect to vτ , whereas the
diffusion coefficient D(2)(vτ , τ ) exhibits a somewhat less ap-
parent quadratic dependence on vτ . Some moderate deviations
from observed behavior are seen, especially in cases (a) and
(c), with !tV = 0.15 s, and to a lesser extent in case (c), with
!tV = 4.5 s. Contrary to the magnetic case, we now see that
the KM expansion of Eq. (6) does not stop for k ! 3, sug-
gesting that truncation of expansion at any finite lower order
would result in some not entirely credible PDFs, which cannot
be reconstructed using the FP or Langevin equations [24].
Basically, since the Pawula’s theorem is not well satisfied,
we can expect that to maintain the Markovian property of the
process for velocity fluctuations, considering the higher-order
coefficients in the KM equation (6) (possibly for k + ∞)
would be necessary. Our results indicate that the observed
time series somewhat deviates from the class of continuous
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FIG. 8. The first and second Kramers-Moyal coefficients as functions of ion velocity increments vτ , for the ion velocity V = |V|. Dashed
red lines represent the optimal fits to the empirical values of D(1)(vτ , τ ) and D(2)(vτ , τ ), with D(4)(vτ , τ ) #= 0, i.e., not maintaining the Pawula’s
theorem.

diffusion processes (discussed in Sec. III C), which may point
to the influence of some jump events within the underlying
stochastic process [27], which would need some more inves-
tigation.

D. Distributions and entropies

It is worth noting that for the stationary solutions of the
FP given by Eq. (9), the probability current must be constant.
Hence, the following formula can be derived (see Sec. 5.2 of
Ref. [24]):

ps(x, τ ) = N0 exp
[ ∫ x

−∞

D(1)(x′)
D(2)(x′)

dx′ − ln D(2)(x)
]
. (15)

In this way, with a linear D(1)(b, τ ) = −a1(τ )b and a
quadratic D(2)(b, τ ) = a2(τ ) + b2(τ )b2, for the magnetic
case, the stationary solution of Eq. (15) becomes a PDF of
the Kappa distribution, given by [19]

ps(b, τ ) = N0
[
1 + 1

κ

( b
b0

)2]κ
, (16)

where κ = 1 + a1(τ )
2b2(τ ) is a shape parameter and b0 =√

a2(τ )
b2(τ )+a1(τ )/2 is a scale parameter. The distribution function

has to be normalized,
∫ ∞
−∞ ps(b, τ )db = 1. We obtain

N0 = 1

B(κ − 1
2 , κ )b0

√
,κ

, (17)

where B is a mathematical Beta function.

In particular, the Kappa distribution approaches the normal
Gaussian distribution for large values of κ . This follows from
the properties of the Beta function in the form B(κ1, κ2) =
'(κ1 )'(κ2 )
'(κ1+κ2 ) , and lim

k+∞
'(k+α)
'(k)kα = 1, for α ∈ R. Fixing α = 1

2 , and

because '(κ − 1
2 ) grows asymptotically at the same rate as

'(κ )√
κ

, the limit of Eq. (17) is simply given by lim
κ+∞

N0 = 1
b0

√
,

.

Hence, as κ + ∞ in Eq. (16), the well-known formula for the
normal density distribution is obtained,

lim
κ+∞

ps(b, τ ) = 1
b0

√
,

e−( b
b0

)2

, (18)

with the mean value µ = 0 and the standard deviation σ =
b0√

2
, characterizing this symmetric PDF with extremely small

tails. In addition, from the asymptotic expansion using the
Stirling’s factorial formula, one can show that in this case
(with the respective third and fourth central moments µ3 and
µ4), not only the third κ3 (skewness) but also the fourth κ4 =
µ4/σ

4 − 3 (excess kurtosis) moments both approach zero.
On the other hand, nonzero κ3 measures the possible asym-

metry for left (κ3 < 0) or right (κ3 > 0) skewed PDF, but the
value of κ4 says how heavily the tails differ from a normal
distribution. The Kappa distribution as a special case of the
Pearson’s type-IV family (i.e., a Pearson’s type-VII distribu-
tion) have been used in numerous studies of solar wind and
is important in space plasma physics [e.g., [33]]. This type
of PDF is symmetric (κ3 = 0) with heavy tail and peaked
shape, measured by a positive κ4 (leptokurtic) or negative κ4
(platokurtic) kurtosis, which exhibits the deviation from the
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FIG. 9. Comparison between the rescaled empirical cPDFs (various continuous colored lines) and the stationary solutions of the FP
equations (black open circles), considering the magnetic field magnitude B = |B| in all three cases. The global scale invariance can be observed.

standard “bell” shape of the normal (mesokurtic) Gaussian
distribution (κ4 ≈ 0).

Further, as is known, in classical statistical mechanics,
Boltzmann additive entropy describes a system in equilibrium.
On the other hand, the higher-order nonadditive nonextensive
entropy is needed for a nonlinear nonequilibrium system, such
as the solar wind at small scales [34]. Tsallis [35] introduced a
generalization of the Boltzmann’s entropy (with kB the Boltz-
mann constant),

Sq[p(x)] = kB

q − 1

{
1 −

∫ +∞

−∞
[p(x′)]qdx′

}
, (19)

where p(x) is a given probability distribution, and any real
number q is a nonextensive Tsallis parameter, which mea-
sures the degree of nonextensivity. For q + 1, the classical
Boltzmann-Gibbs information (additive) entropy is recovered,
given by −kB

∫
p(x′) ln p(x′)dx′.

To unify power-law behaviors with a proper information
measure, we use Tsallis entropy given by Eq. (19). Namely,
to relate the derived Kappa distribution, with the Tsallis q-
distribution function, a simple transformation can be used,
κ = 1/(1 − q); see, e.g., Ref. [36]. The numerical results of
fitting the MMS empirical magnetic data to the given distribu-
tions and determining the relevant parameters of Eq. (16) are
as follows: κ = 1.5179, x0 = 1.9745, and N0 = 0.68438 for
B in case (a); κ = 1.3758, x0 = 2.6955, and N0 = 0.34375 in
case (b); with κ = 3.5215, x0 = 1.7313, and N0 = 1.1866 in
case (c).

Because the κ parameter depends on a1(τ ) and b2(τ ), the
KM coefficients can be related to the supposed nonextensive
character of the fluctuations. The particular values of this κ
parameter can be attributed to the nonextensivity parameter
q, which characterizes the generalized Tsallis entropy. In this
situation, it is given by q = a1(τ )

a1(τ )+2b2(τ ) and is equal to 0.341 in
case (a), 0.273 in case (b), and 0.716 in case (c). The extracted
values of the κ and q parameters provide robust measures of
the departure of the system from equilibrium.

Based on magnetic MMS data, we have already ob-
tained Kappa distributions for various scales, including the

leptokurtic shapes for moderate scales (for the smallest scale
values 7.8 ms described by a peaked shape close to the
Dirac δ function) up to approximately the standard normal
Gaussian distribution for the scale two orders of magnitude
larger [20], Fig. 6. For relatively higher levels, the distribu-
tions still exhibit the peaked shape with high kurtosis, which
refers to tails of the PDF. For velocity fluctuations, higher-
order Kramers-Moyal coefficients should also be taken into
account, with more complicated PDFs with possible slight
asymmetry shown in Figs. 4–6.

Figure 9 illustrates the universal global scale invariance of
the PDFs up to kinetic scales of (a) τ ∼ 0.4 s, (b) τ ∼ 2 s,
and (c) τ ∼ 0.25 s, correspondingly [20]. This monoscaling
scale invariance is obtained by rescaling cPDFs by their cor-
responding standard deviations σ for each case, as explained
in Refs. [19,20]. This demonstrates the exceptional agreement
between empirical cPDFs and the stationary solutions (de-
noted by black open circles) of the FP equation (9) provided
by the analytic formula of Eq. (16). One can only mention here
that these results imply that the mean n-order structure func-
tion Sn(τ ) = 〈bτ (t )n〉 ∼ τ . (n) exhibits a linear (monofractal)
scaling, i.e., . (n) = nH , with a single Hurst exponent H [37].
It means that in contrast to large magnetohydrodynamic scales
(with anomalous scaling), magnetic turbulence on small ki-
netic scales is not intermittent. Interestingly, several analyses
based on Cluster data (we refer to the ESA’s Cluster mission)
[38,39] report scale-invariant behavior, while other analyses
support strongly increasing scale-dependent kurtosis and as-
sociated departures from self-similarity [40,41] reports that
within the kinetic scales, there is a general trend towards large
kurtosis at smaller scales.

V. CONCLUSIONS

The Magnetospheric Multiscale mission with unprece-
dented high millisecond time resolution of magnetometer data
allows us to investigate turbulence on very small kinetic scales
[19,20]. In these papers, we looked at the MMS observations
above 20 Hz, where the magnetic spectrum becomes very
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steep, with the slope close to −16/3, possibly resulting from
interaction between coherent structures [14].

Now, we have also taken into account plasma data with
somewhat lower resolution for ion velocity. Following our
previous studies in the inertial region [10,11], we have primar-
ily shown that the Chapman-Kolmogorov equation, which is a
necessary condition for the Markovian character of fluctu-
ations, is satisfied for the transfer of energy between the
magnetic and velocity fields also on much smaller kinetic
scales. In fact, we have proved that a local transfer mechanism
is present for transfer of ion velocity-to-velocity, velocity-
to-magnetic, and magnetic-to-velocity stochastic fluctuations.
This physically means that this energy transfer to smaller
scales has a local character.

Moreover, we have verified that in the case of magnetic
fluctuations, Kramers-Moyal expansion stops after the second
term, resulting in the Fokker-Planck equation, with drift and
diffusion terms, at least for scales smaller than (a) τ ∼ 0.8 s
near the bow shock (BS), (b) τ ∼ 9 s inside the magnetosheath
(SH), and (c) τ ∼ 0.8 s near the magnetopause (MP), corre-
spondingly.

Similarly as for Parker Solar Probe (PSP) data [42], the
lowest-order coefficients are linear and quadratic functions of
magnetic fluctuations, which correspond to the generalized
Ornstein-Uhlenbeck processes. As expected for some mod-
erate scales, we have the Kappa distributions with heavy tails.
The observed global universal scale invariance corresponds to
a simple linear (monofractal) scaling. The extracted values of
the nonextensity parameter in Tsallis entropy q < 1 equal to
0.341 in case (a), 0.273 in case (b), and (c) 0.716, respectively,
provide robust measures of the departure of the system from
equilibrium.

On the other hand, for velocity fluctuations, higher-order
moments should be taken into account with possibly more
complex dependence on the increments of velocity. There-
fore, in this case, we also see somewhat more complicated
probability density functions. Hence, unlike to the magnetic
fluctuations, monoscaling does not occur, suggesting rather
nonlinear (multifractal) scaling.

Nevertheless, we are still hoping that our observation of
Markovian features in solar wind turbulence will be important
for understanding the relationship between deterministic and
stochastic properties of turbulence cascade on kinetic scales
in complex physical systems.
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APPENDIX A: TIME SERIES CHARACTERISTICS

The analysis of time series is significant in nonlinear dy-
namics because a thorough investigation can reveal all the
essential information on the dynamical properties of the con-
sidered system. To estimate the target variable in predicting
or forecasting, one uses the time variable (or in our case, also
a timescale) as the reference point. The time series analysis
involves the examination of the characteristics of the selected
variables as a function of time, considered as the independent
variable. Time series data for our investigation can be directly
extracted from the measurements within the MMS mission.

A basic assumption regarding the data type is referred to
as stationarity. Precisely, the time series is said to be sta-
tionary if it exhibits no trend, no seasonality, has a constant
variance over time, and a consistent autocorrelation func-
tion over time. To evaluate this feature, one can plot the
data and visually look for trend and seasonal components,
although the more robust methods include statistical tests,
such as the Augmented Dickey-Fuller (ADF) test [29], and the
Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [30]. The
ADF test uses the following hypotheses:

(i) H0: the time series is nonstationary vs
(ii) H1: the time series is stationary.
Note that it is set up this way to maintain a skeptical and

cautious approach towards the findings. The null hypothesis
is assumed to be true until the data present sufficient evidence
that it is not. Naturally, when the p value is less than a
prechosen significance level, say α = 0.05 or, more strictly,
0.01, then the null hypothesis can be rejected, which leads
to the conclusion that the time series is stationary. The test
for nonstationarity of a time series {yt } observed over T time
periods is estimated in the ADF regression model,

!yt = α + βt + / yt−1 +
p∑

j=1

ρ j!yt− j + εt , (A1)

where α is a constant, β is a coefficient on a time trend, p is
a lag order of the autoregressive (AR) process, εt is an error
term (assumed white noise), and differencing terms !yt− j =
yt− j − yt− j−1, with coefficients ρ j . Here in the representation
of ADF, the differencing term is added, in contrast to the
standard Dickey-Fuller test. Once we get a value for the test
statistic DFt = /̂ /SE(/̂ ), where SE denotes the standard error
of the estimator, it can be compared to the relevant critical
value for the Dickey-Fuller test.

Alternatively, the statistical Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test is a type of unit root test. A
unit root is a stochastic trend in a time series that can cause
problems in statistical inference. The KPSS test is used for
assessing the stationarity of a series around a deterministic
trend. Namely, we have the following hypotheses:

(i) H0: the time series is trend stationary or has no unit
root vs

(ii) H1: the time series is nonstationary or has a unit root.
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Both the ADF and KPSS tests are frequently used to ex-
amine the stationarity of times series. A significant distinction
between the ADF test and the KPSS test lies in their null
hypotheses. In the KPSS test, the null hypothesis assumes
stationarity for the series, while for the ADF test, it implies
nonstationarity. Consequently, the practical interpretation of
the p value differs in a contrasting manner for these two tests.
A p value below a given significance level (α = 0.05 or 0.01)
implies nonstationarity, whereas for the ADF test, such a p
value indicates stationarity of the tested series.

Nevertheless, nonstationary time series can be converted
into stationary, e.g., using a differencing method, which is a
simple transformation of the series. This process effectively
mitigates the series dependence on time and stabilizes its
mean, resulting in a reduction of trend and seasonality within
the series. The simplest difference between successive obser-
vations is called a lag-1 difference. However, one should be
careful not to over-difference the time series, as it may lose
some important information or features.

It is also worth mentioning that the time series have some
limitations. For instance, if the missing values are not sup-
ported, some specific tools are needed to effectively address
this problem. To fill in the empty data spots, a linear interpo-
lation method can be used. It is a process of estimating the
value of a function at a specific point, based on the known
values at neighboring points. Hence, it requires knowledge of
two points and the constant rate of change between them. The
primary distinction between an interpolation and regression
methods lies in the requirement to precisely match all data
points in interpolation, whereas regression does not demand
such an exact fit.

APPENDIX B: DATA TRANSFORMATIONS

To compare the cPDF and use the CK condition (4), some
preliminary data transformations are necessary. As is known,
the feature engineering holds a vital role in the development
of data analysis. These features can be time, categorical,
and continuous variables. Among the various available tech-
niques, we highlight the feature binning method. It is used
for the transformation of a continuous or numerical vari-
able into a categorical feature. Binning continuous variables

may introduce nonlinearity and typically enhances the model
performance. We have employed here a specific binning ap-
proach known as equal-width unsupervised binning. This
method falls within the category of binning techniques that
converts numerical or continuous variables into categorical
bins, without taking the target class label into consideration.
This algorithm segments the continuous variable into multi-
ple categories, each characterized by bins or ranges of equal
width. To be precise, in our case, we have begun by esti-
mating the empirical joint PDFs, denoted as P(x1, τ1; x2, τ2).
This estimation process involved counting the occurrences of
distinct pairs (x1, x2) on a two-dimensional grid with equally
spaced data bins, each of moderate size. Next we have car-
ried out the normalization to ensure that the integral over
all bins is equal to one. In a similar way, we have esti-
mated the empirical one-dimensional PDFs P(x2, τ2) using a
one-dimensional grid of bins, followed by the normalization.
Finally, to obtain the empirical cPDFs, we have precisely
applied the conditional probability formula numerically. The
advantage of this approach is that it is simple to implement
and interpret, and it preserves the distribution of the analyzed
data.

In the same way, to distinguish between the local and
nonlocal behavior of fluctuations between two quantities x and
y (instead one of these), one needs to estimate the empirical
cPDFs by using a generalized CK condition (5). Therefore,
because of the difference in time resolutions of both analyzed
time series, we must address the grid of time dimension. We
can employ either the method of mean downsampling (deci-
mation) or upsampling (interpolation) on the chosen variable.
Contrary to a simple linear interpolation briefly described in
Appendix A, decimation aims to reduce the original sample
rate of the input signal to a lower rate by an integer factor.
This factor is just a ratio of the input rate to the output rate.
To increase the clarity of the presented graphs and ensure
better interpretation of the results, we have opted for double-
logarithmic (log-log) and semilogarithmic (log-linear) scales
in some specific instances, rather than the standard linear
scales. This adjustment of a double-logarithmic scale allows
power-law representations to come out as straight lines in
the spectra. Additionally, the semilogarithmic scale has been
employed in Figs. 4–6, and 9.
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