

Fractal Nature of Galaxy Clustering in the Updated CfA Redshift Catalog

Wiesław M. Macek^{1,2*} and Dariusz Wójcik^{1†}

¹Laboratory for Solar System Physics and Astrophysics, Space Research Centre, Polish Academy of Sciences, Bartycka 18A, Warsaw, 00-716, Poland.

²Institute of Physical Sciences, Cardinal Stefan Wyszyński University, Wóycickiego 1/3, Warsaw, 01-938, Poland.

*Corresponding author(s). E-mail(s): macek@cbk.waw.pl,

<https://orcid.org/0000-0002-8190-4620>;

Contributing authors: dwojcik@cbk.waw.pl,

<https://orcid.org/0000-0002-2658-6068>;

†Submitted to *Galaxies collection of Scientific Reports*, June 2025

Abstract

We have recently argued that the expansion of the Universe is compatible not only with standard homogeneity, but also with fractal homogeneity in a hierarchical fractal cosmology. In this work we further test this paradigm using the galactic distances obtained from the Updated CfA Redshift Catalogs. We confirm that the observed multifractal spectrum is consistent with the weighted Cantor set models characteristic of turbulence in space magnetized plasmas such as the solar wind in heliosphere, the very local interstellar medium and even in laboratory experiments. The degree of multifractality is smaller than that found inside the heliosphere and shows some variations between nearby and more distant galaxies, which may be related to the presence of voids in the large-scale matter distribution. A possible asymmetry in the spectrum may be attributed to some deviations from the Hubble's law for an ideal uniform expansion. Overall, the deviations from homogeneity revealed by multifractal analysis should be broadly consistent with Λ CDM large-scale structure formation.

Keywords: scaling: multifractals, universe, galaxies: clustering, mass distribution

2 *Galaxy Distribution*

047 This study examines whether the fractal scaling laws
 048 discovered through multifractal analysis offer a plausible
 049 explanation for the distribution of galaxies in the visible
 050 Universe. We demonstrate that the observed multifrac-
 051 tal spectrum is mostly in line with the weighted Cantor
 052 model that is characteristic of laboratory and space tur-
 053 bulence. The universal multifractal function for galaxies
 054 resembles that observed by NASA's Voyager missions in the
 055 outer heliosphere and even at the heliopause, the outermost
 056 heliospheric boundary.

057
058

1 Introduction

059
060 In the eighteenth century Immanuel Kant suggested that some nebulae might
 061 be distant systems of stars, but the first galaxy beyond the Milky Way was
 062 discovered only in 1924. In fact, by the early twentieth century, based on obser-
 063 vations using 2.5-meter and 5-meter telescopes on Mount Wilson and Palomar
 064 Mountain, respectively, Edwin Hubble established the view of the expanding
 065 Universe with galaxies receding from the Solar System, with velocities roughly
 066 proportional to their celestial distances. At present, after the past one hun-
 067 dred years, one can estimate that even a trillion galaxies, $(0.2 - 2) \times 10^{12}$, may
 068 exist in the entire Universe. Some fractions of them are now classified and well
 069 catalogued. Nevertheless, this allows us to study in more detail the large-scale
 070 structure of the distribution of galaxies in the Universe.

071 Incidentally, if the infinite Euclidean three-dimensional space ($D = 3$) had
 072 been filled with uniformly distributed celestial bodies and a constant density
 073 of mass distribution, this would have led to the sky always being lit near uni-
 074 formly; this "Blazing Sky" effect is often called Olbers's paradox. Alongside
 075 this the Newtonian gravitational force exerted on an object (immersed in an
 076 infinite gravitational potential) would also have been infinite [1, p. 92]. Admit-
 077 tely, this paradox can be eliminated by relativistic theory and the expanding
 078 Universe.

079 Therefore, despite the discovery of large, massive, inhomogeneous struc-
 080 tures with vast spatial voids — common features in astrophysical observations
 081 — the standard cosmological model, based on the theory of general relativity,
 082 still employs a similar approximation, asserting that the Universe is homoge-
 083 neous, at least on sufficiently large scales, e.g., [2]. In particular, Yadav et al.
 084 (2005) tested the assumption of cosmic homogeneity by analyzing the galaxy
 085 distribution within the Sloan Digital Sky Survey (SDSS) Data Release One
 086 (DR1) [3], and Scrimgeour et al. (2012) investigated the transition to large-
 087 scale cosmic homogeneity using the WiggleZ Dark Energy Survey in agreement
 088 with Λ CDM N-body simulations [4]. Recently, West et al. (2025) investigated
 089 the evolution of galaxy cluster alignments, finding that their orientations are
 090 correlated over large scales (up to 200–300 comoving Mpc) and persist at high
 091 redshifts ($z \simeq 1$). This suggests coherent structures in the universe's cosmic
 092

web are larger than previously thought, and these findings are consistent with predictions from the standard Λ CDM cosmological model [5].

Therefore, since the galaxies are actually clustered **in patches, as communicated, e.g., in Ref. [6]**, the expansion of the Universe is basically compatible not only with standard homogeneity but also with fractal features on small scales in a hierarchical fractal cosmology, as postulated by Mandelbrot [1, ch. 32], and later proposed for inhomogeneities in the distribution of large scale structures in the Universe by various authors, e.g. [7, 8]. Further, the available data satisfy power law distributions of mass with various exponents that are substantially lower than three, ranging from a value greater than 1 to about 2, see part III of his seminal book [1]. This would correspond to specific values of various fractal dimensions, $D < 3$, see the monograph [9, ch. 3.3] and Ref. [10, ch. 4]. Naturally, this fractal approach would allow for a dark night sky for any scenario of the evolution of the Universe. Therefore, in this paper we intend to investigate whether the fractal scaling laws identified through multifractal analysis provide a reasonable explanation of the galaxy distribution in the visible Universe.

By the way, we have recently argued that a simple nonlinear law could possibly be important for the origin of the Universe resulting in fractal or multifractal features [9, ch. 3.4], [10, ch. 4]. According to the standard model of the evolution of the Universe, the first stars and galaxies appeared 200–400 millions years after the Big Bang, i.e., much later than the microwave background light was emitted (400,000 years). Apparently, the conditions of these earlier times are imprinted on this light and could possibly form a backlight for later development of the Universe. But to find a direct connection between background fluctuations and the currently observed fractal scaling laws is still far beyond the scope of the current study. Nevertheless, the fractal view of galaxy clusters is supported by luminous radiation data and is consistent with a flat Universe in thermodynamic equilibrium; in addition, this certainly satisfies the Copernican principle.

Some simple monofractal **methodology for distributions of galaxies as fractal systems** have recently been discussed in the astrophysical literature by Teles et al. (2021, 2022) [11, 12] and references therein, including a correlation dimension calculated to probe homogeneity in the Local Universe [13]. However, it seems that the clustering structures with number $N(l)$ at distance l are better explained by the multifractal spectrum of dimensions $f(\alpha)$ with $N(l) \propto l^{-f(\alpha)}$, especially for nonlinear systems in which different parts of the available phase space are visited with varying probabilities [e.g. 14, 15]. The richness of various fractal scaling behaviors has been exploited in Ref. [16]. Traditional methods to study fractal properties of the Universe were discussed in Chapter 4 of the book by Vicent Martínez and Enn Saar “Statistics of the Galaxy Distribution” (2002) [17]. In this paper we apply our novel methods to study the fractal character of the distribution of galaxies, developed and successfully used in the study of the magnetospheres and of the Sun’s heliosphere. After early testing of fractal features of the solar

4 *Galaxy Distribution*

139 wind plasma [18], this method has been successfully verified experimentally in
 140 a plethora of space missions near the Sun [19–22] (as more recently analyzed
 141 even on very small kinetic scales in Solar System’s plasmas, e.g. [23–27]).

142 Interestingly, the universal multifractal function for galaxies is similar to
 143 that identified by NASA’s Voyager missions in the outer heliosphere [see 20,
 144 21, 28] and even at the heliospheric boundaries by Macek et al. (2014) [see
 145 22]. Since the multifractal spectrum is expected to exhibit some universal
 146 properties [e.g., 29], we therefore apply similar fractal numerical methods here
 147 for the direct determination of the multifractal spectrum of the distribution
 148 of galaxies on cosmological scales, using the best currently available catalog
 149 [see, e.g., 30]. We show that the observed multifractal spectrum is basically
 150 consistent with the weighted Cantor models characteristic of turbulence in
 151 space and laboratory experiments [22, 31, 32].

152 In Sect. 2, a consistent description of the best currently available Updated
 153 Redshift Catalog (*UZCAT*) of the observed galaxies is provided, while Sect. 3
 154 outlines modern tools of multifractal analysis (with the multifractal model in
 155 Subsec. 3.2). The vital results of our analysis are presented in Sect. 4, which
 156 demonstrates that the solutions of the weighted Cantor models are in good
 157 agreement with the observed multifractal spectrum of the galaxy distribution.
 158 Finally, Sect. 5 emphasizes the significance of the identified fractal scaling laws,
 159 which could be an important contribution toward the ultimate explanation of
 160 the distribution of matter in the visible Universe.

161

162 **2 Galactic Data**

163

164 We have used in our analysis the redshift data obtained from the Smithsonian
 165 Astronomical Observatory Telescope Data Center, available from <http://tdc-www.harvard.edu/zcat/velocity.dat>. Instead of the older *CfA* catalog
 166 with only 359 objects and the apparent magnitudes $m \leq 14.5$, as analyzed
 167 in Ref. [33], we have now examined the Updated (June 2008) *CfA* Redshift
 168 Catalog (*UZCAT/ZCAT*) compilation of about one million (from a total of
 169 a trillion) various observed galaxies, see <http://tdc-www.harvard.edu/zcat/zcom.htm>. This catalog originally consisted of various sets of galaxies (e.g.,
 170 NZ40, SDSS, 2dF, 6dF, and ZCAT), and later other published observations
 171 of some galaxies were added by the catalogue authors, e.g., [34–36], includ-
 172 ing *ZBIG* responsible for higher relativistic velocities $> 100,000 \text{ km s}^{-1}$, cf.
 173 [37]. However, we have not used velocities with negative source designations
 174 (19,517 observations), which are in private domain (and hence cannot be used
 175 without the owner’s consent).

176 After all, the data assembled by various authors for studying the large-
 177 scale structure of the Universe are basically complete in terms of redshift
 178 information, but not necessarily for some other properties such as diameter,
 179 magnitude, and references. As is known in statistics, data completeness is a
 180 measure of how much essential information is included in a dataset or a model,
 181 and describes whether there are any gaps, missing values, or biases introduced
 182

184

impacting the results. This property is obviously important, as analysis based on incomplete data is not meaningful, and the results may be questionable. It can be tested in various ways, for instance by calculating the percentage of completeness for individual subsets and the entire dataset, or by visualizing the distribution and structure of missing data and testing / comparing distributions. In our case, as discussed in Appendix the merged UZCAT sample is sufficiently complete for our study. However, for individual smaller sets the percentage of completeness is around 85-95%, which is certainly acceptable, with the lowest completeness in the CfA survey at only $\sim 80\%$. For the whole set, which is arguably large, we have systematically used a random data sampling method to estimate completeness, and the results were very similar.

Hence, the velocities based on the redshift data are the best available with respect to the reported measurement errors and source reliability. The primary purpose of this catalog is to be a complete list of galaxies with radial velocities for mapping and statistical studies. Incidentally, following the recommendation that users should remove objects of type > 20 , which were misclassified as galaxies, before using this galaxy catalog, 14,177 observations of V_H have been omitted. The most frequent type was 25 – a plate flaw, stars, and other misclassifications.

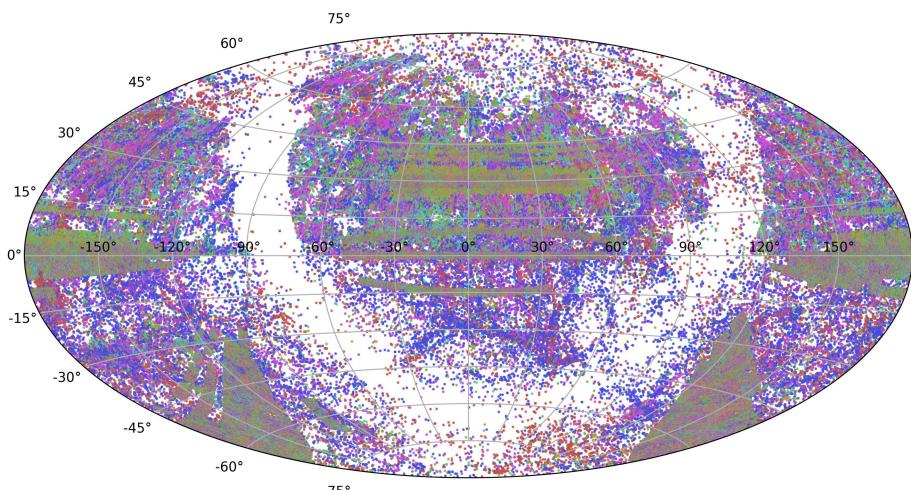
We have used here only the radial velocities $V_H(r) < c$, with the speed of light $c = 299\,792\,458 \text{ m s}^{-1}$, for a relativistic redshift $z = \sqrt{\frac{1+V_H/c}{1-V_H/c}} - 1$, see e.g. [38], which in the nonrelativistic limit of $V_H \ll c$ reduces to $z \approx V_H/c$. The velocities can be corrected for the motion of the Sun, with an apex velocity of $\sim 230 \text{ km s}^{-1}$, right ascension (RA) 18 h 28 m and declination (Dec.) +30 deg (North in galactic coordinates). We have, cf. [37]

$$V_H = \begin{cases} c z & \text{for } V_H \ll c, \\ c \frac{(1+z)^2 - 1}{(1+z)^2 + 1} & \text{otherwise,} \end{cases} \quad (1)$$

for the assumed standard casting cosmology. Therefore, the heliocentric distance to a galaxy under study is given by

$$L_H := \begin{cases} \frac{c z}{H_0} & \text{for } z \ll 1, \\ \frac{c}{H_0} \ln(1+z) = \frac{c}{2H_0} \ln\left(\frac{1+V_H/c}{1-V_H/c}\right) & \text{otherwise.} \end{cases} \quad (2)$$

with a Hubble parameter (present epoch) $H_0 = 70 \text{ km s}^{-1} \text{ Mpc}^{-1}$.


Strictly speaking, we have eliminated negative (blueshifted) redshifts z , eliminated data gaps ($\sim 50,000$ blank velocities), and removed outliers using the IQR method, which is particularly useful for skewed data (in contrast to usual Z-score method), i.e., $\text{IQR} = Q_3 - Q_1$, where $Q_{1,3}$ are the first and third quartiles respectively, and then the outliers are defined as observations below $Q_1 - 1.5 \text{ IQR}$, or above $Q_1 + 1.5 \text{ IQR}$. Thus, we have analyzed the sample of 783,152 observations down to magnitude $m \lesssim 29.5$ (as limited by the Hubble Space Telescope) and moderate relativistic velocities up to $V_H/c \approx 1/2$,

6 *Galaxy Distribution*

231 corresponding to $z \approx 0.73$). After all, one can confirm that for the currently
 232 estimated diameter of the Universe of about $2R_{\max} \approx 28.5$ Gpc, the maximum
 233 receding velocity in most remote galaxies in the last category denoted by violet
 234 should be $V_{\max} = c \tanh(2R_{\max} H_0/c) = 293,018 \text{ km s}^{-1}$ (with $V_H/c = 0.98$
 235 and a very large redshift $z_{\max} = 8.35$).

236 On the other hand, for ultra-relativistic velocities Equation (2) should be
 237 corrected accordingly. We are also aware that using only the radial distance
 238 limits our ability to explain the three-dimensional structure of galaxy distri-
 239 bution. However, we believe that the identification of fractal scaling in galaxy
 240 distribution is an important step toward resolving a fundamental issue in cos-
 241 mology: whether the Universe is homogeneous on large scales or exhibits fractal
 242 properties. Admittedly, more recent datasets such as SDSS DR19, DESI, and
 243 Euclid forecasts might provide more comprehensive and uniform coverage [39],
 244 see <https://www.sdss.org/dr19/bhm/programs/>.

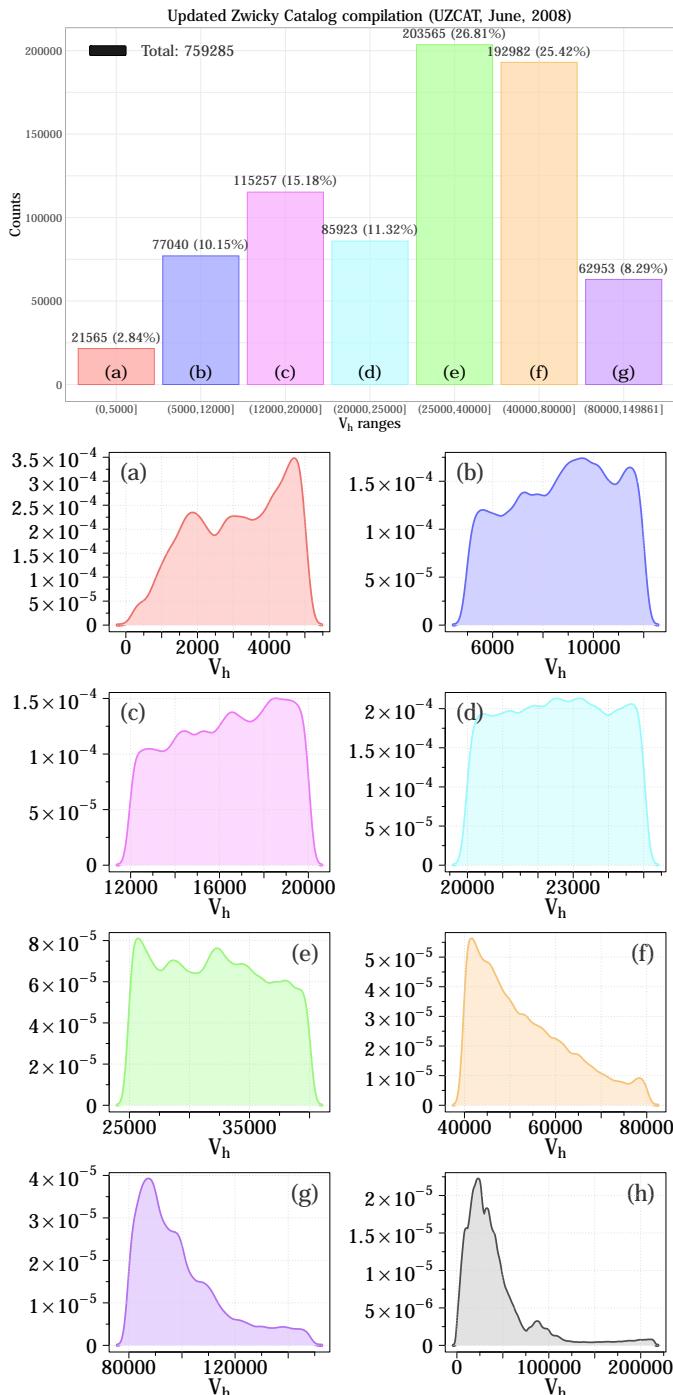
245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262

263 **Fig. 1** Sky map showing the distribution in different categories of galaxies: red, blue,
 264 magenta, cyan, green, orange, and violet, according to their recession velocity, based on the
 265 UZCAT updated (2008) catalog, with populations counts provided in Table 1.

266 The plot of the distribution on the sky of the selected galaxies from *UZCAT*
 267 (Aitoff projection) is shown in Figure 1, for the following various categories of
 268 nearby increasingly distant galaxies: red, blue, magenta, cyan, green, orange,
 269 and violet. We have used here right ascension and declination in the Galactic
 270 (J2000) coordinate system (centred at 0° increasing to the left). In particular,
 271 the green and orange groups represent the well-studied regions of the 2dF
 272 GRS (initially 100,000, increasing to 380,000 points) <http://www.2dfgrs.net>.
 273 The SDSS DR3 Survey <https://classic.sdss.org/dr3/> [40] consists of $\sim 350,000$
 274 galaxies. We include the LCRS and the Century surveys, extensively studied
 275
 276

by John Huchra and Zwicky. The clusters are based on published finding charts and these clusters are standardized by ID's using Dressler's numbers [41].	277
	278
Apparently, the observable Universe, with possible hundreds of billions large galaxies, is not a chaotic scatter. The galaxies form intricate filaments and other large structures, shaping a web-like pattern that defines the large-scale structure of the cosmos. This pattern reflects the behaviour of dark matter and provides insights into the Universe's overall structure and evolution. Obviously, differences in the population of each category of galaxies could result in somewhat different fractal and multifractal characteristics. The MCAR (Missing Completely at Random) test can indirectly assess completeness or the impact of missingness, and the resulting p-value of this test is > 0.05 in all cases, so one cannot reject the null hypothesis, suggesting that data is likely missing completely at random. Therefore, using MCAR, including MAR (Missing at Random), and MNAR (Missing Not at Random) tests [42], we have verified that the small incompleteness of the redshift data used in our analysis does not change the obtained results, as listed in Table 1, where the population of galaxies with recorded redshifts among the galaxies in the catalogue is also provided.	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294

In Figure 2 box plots of various populations for the following categories of the galaxies under study: red, blue, magenta, cyan, green, orange, and violet are displayed as a function of the receding speed together with the empirical probability density functions (PDFs), which have been computed using kernel density estimates (KDE). All the KDE plots generally show low densities across different ranges. They exhibit minor but no dominant peaks, indicating a multimodal distribution with several small clusters. The data points appear to be spread fairly evenly across the ranges, with no significant concentration. The skewness, however, is clearly pronounced in the contrasting cases.	295
	296
	297
	298
	299
	300
	301
	302
	303
	304


3 Fractal Analysis

The basic concepts of fractal sets are elucidated in standard textbooks [e.g., 29, 43]. We note only that fractals are characterized by <i>self-similarity</i> , which is described by a single fractal dimension (independent of the scale l). On the other hand, a multifractal is a more complex object that can exhibit different self-similarities (dependent on the scale l), and is described by the spectrum of dimensions, or a multifractal singularity spectrum [29, ch. 10].	307
	308
	309
	310
	311
	312
	313
	314
	315

3.1 Fractal Characteristics

A comparison of the main characteristics of fractals (using the usual measure of the volume of a set) and multifractals (with a probability measure describing the likelihood of visiting a fraction of the set) has been thoroughly discussed in Sec. 1 of Ref. [22].	316
	317
	318
	319
	320
	321
	322

As is well known, contrary to the usual monofractal scaling, basically two universal functions are characteristic for multifractals. Namely, for a set consisting of N elements with probability measures $p_i(l)$ associated with a given

367 **Fig. 2** The box plots of distribution and probability density functions (PDFs) of different
368 coloured categories of galaxies red, blue, magenta, cyan, green, orange, and violet depending
of the receding speed from the UZCAT updated (2008) catalog with populations displayed
in Table 1.

scale l , the generalised dimension is defined as

$$D_q = \frac{1}{q-1} \lim_{l \rightarrow 0} \frac{\log \sum_{i=1}^N (p_i)^q}{\log l}, \quad (3)$$

while the multifractal singularity spectrum $f(\alpha)$ as a function of the singularity strength α ($p_i(l) \propto l^{\alpha_i}$) is defined by

$$f(\alpha) = \lim_{\varepsilon \rightarrow 0} \lim_{l \rightarrow 0} \frac{\log [N_l(\alpha + \varepsilon) - N_l(\alpha - \varepsilon)]}{\log 1/l}. \quad (4)$$

In particular, for $q = 0$ one recovers a simple capacity (box-counting) dimension, $D_0 = \lim_{l \rightarrow 0} \log N / \log l$, which represents the scaling of how measures are distributed in the support of the set. Next, for $q = 1$ the information dimension, $D_1 = \lim_{l \rightarrow 0} \sum_{i=1}^N [p_i(l) \log(p_i(l)) / \log(l)]$, with a geometrical average of $D_1 \approx \langle \log p \rangle_{\text{av}} / \log l$ is obtained (using de l'Hôpital's rule), while for $q = 2$, the D_2 corresponds to the well-known standard correlation dimension $D_2 = \lim_{l \rightarrow 0} \sum_{i=1}^N \log p_i^2(l) / \log(l)$ with the ordinary arithmetic average $D_2 \approx \log \langle p \rangle_{\text{av}} / \log l$, see Ref. [44]. In general, the generalised dimensions D_q are nonlinear functions of any given real index q and provide important information about multifractality of the system [29]. Equivalently, the universal singularity spectrum $f(\alpha)$, with the maximum value $f(\alpha_0) = D_0$, characterize multifractality of the system under study [43]. The line joining the origin to the point at $\alpha = D_1$, the information dimension, is tangent to the shape of the spectrum. These functions, illustrated in Figure 3.7 of Ref. [9], and thoroughly discussed in Refs. [20], [21], and [44], allow a comparison of the experimental results with the phenomenological models of turbulence [45, 46].

In addition to the usual probability measure $p_i(l)$, we can also define the following higher-order pseudoprobability measures associated with each scale l :

$$\mu_i(q, l) \equiv \frac{p_i^q(l)}{\sum_{i=1}^N p_i^q(l)}. \quad (5)$$

Using a fractal dimension index $f_i(q, l) \equiv \log \mu_i(q, l) / \log l$, one can directly calculate the multifractal spectrum as the average of the pseudoprobability measure $\mu_i(q, l)$ according to Equation (5) denoted here by simple brackets $\langle \dots \rangle$ [47]

$$f(q) \equiv \lim_{l \rightarrow 0} \sum_{i=1}^N \mu_i(q, l) f_i(q, l) = \lim_{l \rightarrow 0} \frac{\langle \log \mu_i(q, l) \rangle}{\log(l)}. \quad (6)$$

The average value of the singularity strength is given by [48]

$$\alpha(q) \equiv \lim_{l \rightarrow 0} \sum_{i=1}^N \mu_i(q, l) \alpha_i(l) = \lim_{l \rightarrow 0} \frac{\langle \log p_i(l) \rangle}{\log(l)}. \quad (7)$$

415

3.2 Multifractal Model

416 We have already argued that simple nonlinear or fractal models provides a use-
 417 ful tool for phenomenological analysis of complex turbulent media [10, 49]. For
 418 example, the generalised weighted Cantor set is a simple example of multifrac-
 419 tals, as explained e.g. in the textbook [43]. This model is illustrated in Figure 2
 420 of Ref. [44]. When constructing this model with scale parameter $\lambda \leq 1/2$ we
 421 have the analytical expressions for D_q and $f(\alpha)$ [e.g. 19]. Namely, if measures
 422 p and $1 - p$ are applied to the left and right remaining parts of a unit interval
 423 the function $\tau(q) \equiv (q - 1)D_q$ is given by Equation (11) in Ref. [21]

$$425 \quad 426 \quad 427 \quad \tau(q) = \frac{\log[p^q + (1 - p)^q]}{\log \lambda} \quad (8)$$

428 and for $\alpha(q) = \tau'(q)$ we have the following formula:
 429

$$430 \quad 431 \quad 432 \quad \alpha(q) = \frac{1}{\log \lambda} \frac{p^q \log p + (1 - p)^q \log(1 - p)}{p^q + (1 - p)^q}. \quad (9)$$

433 Then, using the Legendre transformation, we obtain the explicit formula for
 434 the multifractal spectrum $f(\alpha(q)) = q\alpha(q) - \tau(q)$:

$$435 \quad 436 \quad 437 \quad 438 \quad f(\alpha) = \frac{q[(1 - p)^q \log(1 - p) + p^q \log p] - [(1 - p)^q + p^q] \log[(1 - p)^q + p^q]}{[(1 - p)^q + p^q] \log \lambda}. \quad (10)$$

439 However, for a more developed generalised two-scale weighted Cantor set
 440 we must specify two scales l_1 and l_2 ($l_1 \neq l_2$), satisfying $l_1 + l_2 \leq 1$. In this
 441 case, one needs to solve for $\tau(q)$ the transcendental equation, e.g., [29],

$$442 \quad 443 \quad 444 \quad 445 \quad \frac{p_1^q}{l_1^{\tau(q)}} + \frac{p_2^q}{l_2^{\tau(q)}} = 1, \quad (11)$$

446 which is only slightly more general than the analytical solution given by
 447 Equation (8). Finally, it is worth mentioning that the standard middle-thirds
 448 monofractal Cantor set model is recovered only for $\lambda = 1/3$ and $p = 1/2$, with
 449 $D_0 = \ln 2 / \ln 3$.

450 The difference between the calculated maximum and minimum dimensions,
 451 corresponding to the regions in the phase space with the least and most dense
 452 probability densities, has been proposed in Ref. [44] and [19]

$$453 \quad 454 \quad 455 \quad \Delta \equiv \alpha_{\max} - \alpha_{\min} = D_{-\infty} - D_{\infty} = \left| \frac{\log(1 - p)}{\log l_2} - \frac{\log(p)}{\log l_1} \right|, \quad (12)$$

456 where Δ quantifies the degree of multifractality. Naturally, this parameter Δ
 457 also reflects deviations from strict self-similarity, and it can serve as a measure
 458 of intermittency, as discussed in [45, chapter 8]. Another quantitative param-
 459 eter describing the multifractal scaling is the measure of asymmetry of the

spectrum defined in Ref. [19]

$$A \equiv \frac{\alpha_0 - \alpha_{\min}}{\alpha_{\max} - \alpha_0}, \quad (13)$$

where $\alpha = \alpha_0$ is the value at which the spectrum reaches its maximum, $f(\alpha_0) = D_0$. The case when $A = 1$ ($l_1 = l_2 = 1/2$) corresponds to the one-scale p -model [e.g., 50].

Now, following Ref. [51] the probability measures $p(l)$ associated with a given scale $l := L_H$, as discussed in Sec. 2, can be constructed directly from the observed distribution of galaxies. Specifically, one first normalizes the series of average numbers of the observed objects $n(l_i)$ in i -th shell of radius l_i , where $i = 1, \dots, \mathcal{N} = 2^m$ (e.g., taking $m = 17$). For $j = 2^{m-k}$, $k = 0, 1, \dots, m$, one defines:

$$p(x_j, l) \equiv \frac{1}{\mathcal{N}} \sum_{i=1+(j-1)\Delta l}^{j\Delta l} n(l_i) = p_j(l), \quad (14)$$

where the successive average values $\langle n(l_i + \Delta l) \rangle$ are taken over the intervals between l_i and $l_i + \Delta l$, for each $\Delta l = 2^k$ with the total \mathcal{N} number of galaxies in the system [cf. 20].

One can show that in the inertial range of scales, the average value of the q -th moment of p at various scales l scale as [51]

$$\langle p^q(l) \rangle \sim l^{\gamma(q)}, \quad (15)$$

where the exponent γ is related to the generalised dimension via $\gamma(q) = (q-1)(D_q - 1)$. Using this method the values of D_q can be determined from the slopes of $\log \langle p^q(l) \rangle$ versus $\log l$ for each real q , as expressed in Equation (15). Alternatively, the multifractal function $f(\alpha)$ versus scaling index α , which characterizes the universality of the multifractal scaling behavior, can be obtained using the Legendre transformation. It is worth noting, however, that we have obtained this multifractal universal function directly from the slopes given in Equations (6) and (7), using this direct method in various situations [see, 19–22].

4 Results

Admittedly, with the *CfA* limited observations, one can only determine the points near the maximum of $f(\alpha)$ [cf. 33]. One can possibly extrapolate these points near the intercepts at the maximum, $f(\alpha_0) = D_0$. On the other hand, in our study based on a much more extensive *UZCAT* dataset of redshifted distances presented in Sect. 2, Equation (2), and using the fractal methods described in Sect. 3 with the multifractal model of Subsect. 3.2, we are now able to obtain a more reliable multifractal spectrum of the distribution of galaxies in the Universe.

507 Therefore, we consider astronomical surveys at different right ascension
 508 (RA) and declination (Dec) values, as shown in Figure 1. However, instead of
 509 plotting observations by their exact positions on the celestial sphere (which
 510 would not be exactly insightful), we first illustrate how a given property varies
 511 as a function of RA. We use this variable as a proxy for time in a series of
 512 heliocentric velocities for individual galaxies, treating the 0 – 24 h range of RA
 513 (similarly to a 24-hour time period), but now expressed in the J2000 galac-
 514 tic frame of reference. This plot created using the right ascension (celestial
 515 equivalent of longitude) variable is commonly used in observational astronomy
 516 when tracking the position of celestial objects over time. Obviously, this lever-
 517 ages the regular rotation of the Earth to map RA values to observational time,
 518 assuming that the observations are evenly distributed.

519 In this way, Figure 3 displays the differences of successive 2^m -step aver-
 520 ages of large-scale fluctuations in the receding redshifted speeds $\Delta_{2^m} V_H$ (in
 521 km s^{-1}) for $m = 5, \dots, 12$, see Sect. 9.4.2 in Ref. [51]. One can identify pat-
 522 terns or trends that may correspond to certain celestial regions or astronomical
 523 phenomena. Moreover, any deviations from the ideal linear Hubble law can
 524 provide insights into large-scale structures, peculiar motions, and evolutionary
 525 effects. In particular, we observe some irregular bursty, spiky, inhomogeneous
 526 (aperiodic, and asymmetric) features of varying widths, which are characteris-
 527 tic for multifractal fluctuations for intermittent turbulence. In most cases, the
 528 magnitudes of positive fluctuations are somewhat greater than those for the
 529 negative fluctuations. Because time series for larger scales are magnified parts
 530 of the time series for the velocity increments for smaller scales, it seems that the
 531 cosmological fluctuations are self-affine across different scales. Hence, we can
 532 proceed with the multifractal analysis for various q values and scales $l := L_H$
 533 as defined in Sect. 2, Equation (2). The normalized probability measures $p(l)$
 534 depending on scale $l := L_H$ are now constructed according to Equation (14)
 535 for each category, as obtained using the *UZCAT* galaxy catalog data shown in
 536 Figure 1.

537 Second, in Figures 4 and 5 both average logarithmic probability and pseu-
 538 doprobability measures $\langle \log_{10} p_i(l) \rangle$ and $\langle \log_{10} \mu_i(q, l) \rangle$ versus $\log_{10} l$ for all
 539 colored categories in the *UZCAT* catalog are now presented for the follow-
 540 ing values of $q \in [-4, 6] \cap \mathbb{Z}$ values of q featuring very robust fittings with
 541 $R^2 < 0.975$ and $r < 0.975$ – where r denotes the Pearson correlation coefficient
 542 – have been excluded. As seen, the calculated slopes can be fitted to straight
 543 lines over a range of scales spanning approximately 4 to 5 orders of magni-
 544 tude. Hence, similarly as for the heliospheric plasma cf. [19, 21, 22], we can
 545 derive the multifractal spectrum using *UZCAT* data and compared the obser-
 546 vational points with the weighed one-scale or the two-scale Cantor set models,
 547 as discussed in Section 3.2.

548 The generalised dimensions D_q as a function of q and the universal sin-
 549 gularity spectrum $f(\alpha)$ as functions of singularity strength α are displayed in
 550 Figure 6 and 7, respectively. The values of D_q and $f(\alpha)$, as given in Equations
 551
 552

(6) and (7), are calculated using the *UZCAT* data (denoted by boxes) and compared with both Cantor set models [cf. 44, Figure 2].

As expected, the **generalised dimension (1D proxy for normalized probability measure, quantifying multifractality)** D_q is a decreasing function of q and the multifractal spectrum $f(\alpha)$ is a **universal concave function of singular index α** [29, Fig. 9.1]. In particular, we have $f(\alpha_0) := D_0 = 1.0$ and $D_1 = 0.994 \pm 0.007$ and as well as $D_2 = 0.983 \pm 0.013$. It is worth noting that, after removing the normalization, the entire spectrum of D_q for any real q , as presented in Figure 6, is consistent with a robust estimate of a 3D proxy $D_2(r) + 2$ which reaches a value of 2.97 (1% from homogeneity) in the Local Universe ($z < 0.2$) obtained from the *SDSS* catalog, as the scale r increases when the transition to homogeneity scales occurs (see Fig. 5 of ref. [13]). This should, on the other hand, be compared with the values for specific single fractal dimensions D obtained by Teles et al. (2022), who tried to challenge the standard model using different galaxy samples and somewhat higher redshifts ($z < 1$) [12].

Here, however, we use the *UZCAT* catalogued observations, which are reasonably well consistent with the p -model, or one-scale Cantor set symmetric spectrum (continuous lines), fitted to the theoretical solutions of Equations (8), and given in Equations (9) and (10), especially for $q > 0$ (left part of the spectrum) while for $q < 0$ (right part) the agreement is somewhat less clear. By using surrogate data tests, it has already been verified that the most popular correlation dimension for the solar wind is not merely an artifact of data selection [18, Fig. 8]. A similar test for the plethora of galaxy catalogs is deferred to future detailed studies.

Naturally, an even better agreement is observed with the asymmetric two-scale (dashed lines) Cantor set model, with the corresponding parameter p (or $p_1 = p$, and $p_2 = 1 - p$) and lengths l_1 and l_2 given by the theoretical model in Equation (11). Hence, the empirical values are in a good agreement with the theoretical model [9]. To correctly select all these model parameters (p_1 , p_2 , l_1 , l_2), we have used the loss metric to find the best possible fits [52]. The method combines the MSE and MAE metrics, giving a better loss function that is less sensitive to outliers, e.g., due to irregular intervals in the time series. Furthermore, for the two-scale Cantor model (as well as for the one-scale model), we have $p_1 + p_2 = 1$ (see also Ref. [9]), meaning that the fragmentation with probability p_1 for a fragment of length l_1 is virtually equivalent to fragmentation with probability p_2 for a fragment of length l_2 . To accelerate computations, parallel processing was employed, utilizing multiple processor cores simultaneously.

However, the total degree of multifractality $\Delta \approx 0.1$ is substantially smaller than that inside the heliosphere $\Delta = 0.3 - 0.7$, but larger than that in non multifractal ($\Delta \approx 0$) case of the very local interstellar medium (VLISM) after the crossing of the heliopause (at ~ 122 AU) by Voyager 1 in 2012 [22].

599 **Table 1** Values of Parameters Describing Multifractality Δ and Asymmetry A of the
 600 Spectra for the Redshifts from the *UZCAT* Catalog for Variously Populated Categories of
 601 Distances to Remote Galaxies (in 10^3 km s $^{-1}$).

Galactic Category	Velocity max	Redshift max	Population	Multifractality Δ	Asymmetry A
Red	5	0.0168	21,556	0.0862	0.8817
Blue	12	0.0409	77,026	0.0822	0.9677
Magenta	20	0.0667	115,233	0.1225	0.4774
Cyan	25	0.0871	85,905	0.0855	1.1093
Green	40	0.1434	203,561	0.0873	0.7793
Orange	80	0.3214	192,982	0.1087	1.4238
Violet	<150	0.7321	62,562	0.1367	1.9697
Total			759,285	0.1532	0.8349

612 This suggests a predominantly simple linear fractal scaling of galaxy distribution.
 613 Admittedly, we are still able to examine only a small fraction of all
 614 the galaxies existing in the Universe. Therefore, we cannot definitely deter-
 615 mine whether the actual distribution is close to a true fractal. Nonetheless,
 616 **since the calculated correlation dimension D_2 is consistent with the**
 617 **value in the Local Universe using the SDSS catalog, when the tran-**
 618 **sition to homogeneity scales occurs [13]**, it seems that the deviations
 619 from homogeneity revealed by the multifractal analysis should be roughly con-
 620 sistent with Λ CDM large-scale structure formation. The parameters $p \approx 0.45$
 621 and $\lambda \leq \frac{1}{2}$ for the one-scale model likely reflect the presence of voids in the
 622 large-scale matter distribution. In particular, the slightly asymmetric spectra
 623 with $A = 0.5 - 2.0$ in the two-scale weighted Cantor set model ($A \neq 1$) may
 624 be related to the deviation from Hubble's law for in an otherwise uniformly
 625 expanding Universe.

626 We have also calculated the multifractal parameter Δ and asymmetry A
 627 from Equations (12) and (13) for the observed Universe, as a function of dis-
 628 tances for all categories: red, blue, magenta, cyan, green, orange, and violet,
 629 The results are presented in Table 1. The differences listed in Table 1 vary
 630 slightly, from 0.09 for nearby galaxies ($\Delta \simeq 0.1$) to $\Delta \simeq 0.14$) for the most
 631 remote galaxies receding from our Solar System. This variation likely reflects
 632 differences in the populations of receding galaxies across categories and dis-
 633 tances. The parameters $p \approx 0.45$ and $\lambda \leq \frac{1}{2}$ for the one-scale model are
 634 apparently related to some voids in the large-scale matter distribution. More-
 635 over, a possible asymmetry ($A = 0.8$) of the total spectrum for the two-scale
 636 weighted Cantor set ($A \neq 1$) could be attributed to some deviations from the
 637 Hubble's law in an ideally uniform expanding Universe.

639 5 Conclusions

640 Based on a sample consisting of various categories of about 750,000 galax-
 641 ies taken from the *UZCAT* catalog, as highlighted by colors in Figure 1, we

have studied the large-scale distribution of galaxies in the Universe by analyzing intermittent self-affine multifractal fluctuations in the average heliocentric (relativistic redshifted) velocities, as presented in Figure 3. 645
646
647

Basically, using the calculated slopes depicted in Figures 4 and 5 along 648
with the one-scale or two-scale weighted Cantor set models, we have finally 649
obtained the generalised dimensions and the universal multifractal spectrum 650
shown in Figures 6 and 7. It is worth noting that the observed multifractal 651
spectrum is simply based on direct comprehensive analysis of redshifted 652
distances from the best currently available catalog of observed galaxies. In this 653
way, we have provided new important supporting evidence that the large-scale 654
galaxy distribution most probably has a multifractal structure consistent with 655
the weighted Cantor set model. 656

Because of the differences in population of various classes of galaxies, the 657
degree of multifractality Δ of the spectrum somewhat varies between 0.09 and 658
0.14 for increasingly remote receding distances, as listed in Table 1. However, 659
the degree of multifractality is rather small, $\Delta \lesssim 0.15$, being obtained from 660
admittedly a tiny fraction of all possibly existing galaxies. Hence, one is still 661
not able to give any definitive answer whether the galaxies in the entire Universe 662
actually exhibit multifractal or even a simple fractal distribution, as has 663
already been suggested in Ref. [1]. Possible deviations from the Hubble law 664
may be reflected in an asymmetric multifractal spectrum. We also suggest a 665
link between multifractal characteristics and voids in the large-scale structure. 666

Admittedly, further investigations including 3-D simulations are needed to 667
confirm the actual distribution of galaxies. Nevertheless, on the hundredth 668
anniversary of the discovery of the first galaxy beyond the Milky Way, we are 669
still hoping that the identification of fractal scaling laws of galaxies could be an 670
important contribution to ultimate explanations of the distribution of matter 671
in the Universe. 672

Appendix: Limitations and completeness of the observational data 673

The integrated CfA redshift compilation (UZCAT) explicitly incorporates 674
many surveys, including SDSS DR1/DR3, 2dF, 6dF, LCRS, IRAS/PSCz, other 675
smaller surveys, including ZBIG, and even private source entries (which have 676
been removed). The velocities in the file are stored as heliocentric $c \cdot z$, which 677
were subsequently converted to the rest frame, as stated in Equation (1). 678

The UZCAT catalogue has various limitations. Firstly, the different surveys 679
contribute very different footprints (e.g., SDSS strips/plates, 2dF NGP/SGP 680
strips). If treated as a single uniform sample one could misinterpret survey 681
boundaries and overlapping regions. However, the author J. Huchra has 682
already addressed the overlapping data. Additionally, we have employed the 683
positional cross-match with a sensible tolerance depending on the original 684
coordinate accuracy fields. We have flagged the multiplets and split/resolved them 685
manually when needed, also following the “Comments” column. Furthermore, 686
687
688
689
690

16 *Galaxy Distribution*

691 some contributors targeted special classes (LRGs, quasars, IRAS objects, radio
 692 galaxies, etc.). There are non-random color/AGN/IR biases in parts of ZCAT
 693 (e.g., Véron-Cetty quasar lists included).

694 Thus, we have identified survey sources, types, and classes for the objects
 695 (presenting categorical variables in data) and decided whether to include or
 696 exclude specialized programs for our scientific goal. Also, the UZCAT entries
 697 pull magnitudes from many systems (Zwicky m_{Zw} , SDSS r , APM b_J , etc.),
 698 with large (~ 0.3 mag) errors. This can conservatively be approached by
 699 restricting our analysis to regions with high-quality homogeneous photometry
 700 (e.g., SDSS footprint), and building volume-limited subsamples using magni-
 701 tudes with small $\sigma \sim 0.02$. Alternatively, one could apply the probabilistic
 702 weight approach, which corrects the Eddington- vs. Malmquist-like scatter at
 703 the catalog-selection level. (e.g. <https://www.aanda.org/articles/aa/full.html/2015/04/aa25489-14/aa25489-14.html>)

704 As a result, the large surveys that dominate UZCAT each achieve high
 705 completeness within their design limits (for bright magnitudes and outside the
 706 Galactic plane): 2dF has $\geq 90\%$ completeness well above its faint limit and
 707 falls to $\approx 80-85\%$ at the faint edge in some fields, 2MASS XSC meets Level-1
 708 requirements and is empirically $> 95\%$ complete for bright galaxies away from
 709 the plane, and SDSS reaches very high spectroscopic completeness for its main
 710 sample though with fiber-collision caveats. Huchra et al. (2012) report $\approx 91\%$
 711 sky coverage for the merged efforts. Therefore, in general, the merged UZCAT
 712 sample is sufficiently complete for many large-scale/qualitative studies.

714

715

Acknowledgments

716

717 **W. M. M.** wishes to thank Vincenzo Carbone (1957–2025) from the Uni-
 718 versity of Calabria and Len F. Burlaga from the NASA Goddard Space Flight
 719 Center for their assistance with methods of fractal analysis. **The discovery**
 720 **of large-scale structure in the Universe by Jaan Einasto** and the influ-
 721 ential contribution of John Huchra (1948–2010) to the galaxy catalog are also
 722 gratefully acknowledged. **We would like to thank the reviewers for their**
 723 **inspiring comments, which greatly improved our presentation, and**
 724 **especially V. J. Martínez for early drawing attention to the clus-**
 725 **tering paradigm and multifractal measure.** The sky map of the selected
 726 galaxies was constructed using the *AstroPy* package for Astronomy in Python.
 727 The data were processed using statistical programming language R.

728

729

730

Funding

731

732 This work has been supported by the National Science Centre, Poland
 733 (Narodowe Centrum Nauki) through grant No. 2021/41/B/ST10/00823.

734

735

736

Authors contribution

Following the previous work by Macek et al. (2014), see Ref. [22], W.M.M wrote the main manuscript and D.W. performed the numerical calculations, prepared the figures, and contributed to the paper.

The authors declare no competing interests.

Data Availability

The data supporting the results in this article are available through the Smithsonian Astronomical Observatory Telescope Data Center available from <http://tdc-www.harvard.edu/zcat/velocity.dat>.

References

- [1] Mandelbrot, B. B. *The Fractal Geometry of Nature* (Freeman, New York, 1982). 737
738
739
740
741
- [2] Hogg, D. W. *et al.* Cosmic homogeneity demonstrated with luminous red galaxies. *The Astrophysical Journal* **624** (1), 54–58 (2005). URL <http://dx.doi.org/10.1086/429084>. <https://doi.org/10.1086/429084> . 742
743
744
745
746
747
748
749
- [3] Yadav, J., Bharadwaj, S., Pandey, B. & Seshadri, T. R. Testing homogeneity on large scales in the Sloan Digital Sky Survey Data Release One. *Monthly Notices of the Royal Astronomical Society* **364** (2), 601–606 (2005). URL <http://dx.doi.org/10.1111/j.1365-2966.2005.09578.x>. <https://doi.org/10.1111/j.1365-2966.2005.09578.x> . 750
751
752
753
754
755
756
757
- [4] Scrimgeour, M. I. *et al.* The WiggleZ Dark Energy Survey: the transition to large-scale cosmic homogeneity: Cosmic homogeneity in the wigglez survey. *Monthly Notices of the Royal Astronomical Society* **425** (1), 116–134 (2012). URL <http://dx.doi.org/10.1111/j.1365-2966.2012.21402.x>. <https://doi.org/10.1111/j.1365-2966.2012.21402.x> . 758
759
760
761
762
763
- [5] West, M. J., Propris, R. D., Einasto, M., Wen, Z. L. & Han, J. L. Evolution of cluster alignments as evidence of large-scale structure formation in the universe. *The Astrophysical Journal Letters* **987** (2), L24 (2025). URL <https://arxiv.org/abs/2506.19826>. <https://doi.org/10.3847/2041-8213/ade66d> . 764
765
766
767
768
769
- [6] Maddox, J. The Universe as a Fractal Structure. *Nature* **329**, 195 (1987). <https://doi.org/10.1038/329195a0> . 770
771
772
773
774
775
- [7] Labini, F. S. Inhomogeneities in the universe. *Classical and Quantum Gravity* **28** (16), 164003 (2011). URL <http://dx.doi.org/10.1088/0264-9381/28/16/164003>. <https://doi.org/10.1088/0264-9381/28/16/164003> . 776
777
778
779
780
781
782

783 [8] Park, C. *et al.* Alcock–Paczynski test with the evolution of redshift-space
 784 galaxy clustering anisotropy. *Monthly Notices of the Royal Astronomical Society* **470** (3), 2617–2632 (2017). <https://doi.org/10.1093/mnras/stx1291> .

787

788 [9] Macek, W. M. *The Origin of the World: Cosmos or Chaos?* (Cardinal Stefan Wyszyński University (UKSW) Scientific Editions, Warsaw, Poland, 2020). URL <https://wydawnictwo.uksw.edu.pl/ksiegarnia/886--e-book-the-origin-of-the-world-cosmos-or-chaos.html>. In English, ISBN: 978-83-8090-686-0, e-ISBN: 978-83-8090-687-7.

792

793 [10] Macek, W. M. Skiadas, C. H. & Dimotikalis, Y. (eds) *On the Origin
 794 of the Universe: Chaos or Cosmos?* (eds Skiadas, C. H. & Dimotikalis,
 795 Y.) *14th Chaotic Modeling and Simulation International Conference*, 311–
 796 326 (Springer International Publishing, Cham, 2022). URL https://link.springer.com/chapter/10.1007/978-3-030-96964-6_21.

799

800 [11] Teles, S., Lopes, A. R. & Ribeiro, M. B. Fractal analysis of the ultravista
 801 galaxy survey. *Physics Letters B* **813**, 136034 (2021). URL <https://www.sciencedirect.com/science/article/pii/S0370269320308376>. <https://doi.org/https://doi.org/10.1016/j.physletb.2020.136034> .

803

804 [12] Teles, S., Lopes, A. & Ribeiro, M. B. Galaxy distributions as fractal
 805 systems. *European Phys. J. C* **82**, 896 (2022). <https://doi.org/10.1140/epjc/s10052-022-10866-0> .

807

808 [13] Dias, B. L., Avila, F. & Bernui, A. Probing cosmic homogeneity
 809 in the Local Universe. *Mon. Not. Royal Astronom. Soc.* **526** (3),
 810 3219–3229 (2023). URL <https://doi.org/10.1093/mnras/stad2980>.
 811 <https://doi.org/10.1093/mnras/stad2980>, <https://arxiv.org/abs/https://academic.oup.com/mnras/article-pdf/526/3/3219/51991641/stad2980.pdf> .

814

815 [14] Jones, B. J. T., Martinez, V. J., Saar, E. & Einasto, J. Multifractal
 816 Description of the Large-Scale Structure of the Universe. *Astrophys. J. Lett.* **332**, L1 (1988). <https://doi.org/10.1086/185254> .

818

819 [15] Gaite, J. Scaling laws in the stellar mass distribution and the transition
 820 to homogeneity. *Advances in Astronomy* **2021** (1), 6680938 (2021). URL
 821 <https://onlinelibrary.wiley.com/doi/abs/10.1155/2021/6680938>. <https://doi.org/https://doi.org/10.1155/2021/6680938>, <https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/10.1155/2021/6680938> .

823

824 [16] Jones, B. J., Martínez, V. J., Saar, E. & Trimble, V. Scaling laws
 825 in the distribution of galaxies. *Rev. Modern Phys.* **76**, 1211–1266
 826 (2005). <https://doi.org/10.1103/RevModPhys.76.1211>, <https://arxiv.org/abs/arXiv:astro-ph/0406086> .

828

[17] Martinez, V. J. & Saar, E. Statistics of galaxy clustering (2002). URL <https://arxiv.org/abs/astro-ph/0203251>. *astro-ph/0203251*. 829
830
831

[18] Macek, W. M. Testing for an attractor in the solar wind flow. *Physica D: Nonlinear Phenomena* **122** (1), 254–264 (1998). URL <https://www.sciencedirect.com/science/article/pii/S0167278998000980>. [https://doi.org/https://doi.org/10.1016/S0167-2789\(98\)00098-0](https://doi.org/https://doi.org/10.1016/S0167-2789(98)00098-0) . 832
833
834
835
836

[19] Macek, W. M. & Wawrzaszek, A. Evolution of asymmetric multifractal scaling of solar wind turbulence in the outer heliosphere. *J. Geophys. Res.* **114** (13) (2009). <https://doi.org/10.1029/2008JA013795> . 837
838
839

[20] Macek, W. M., Wawrzaszek, A. & Carbone, V. Observation of the multifractal spectrum at the termination shock by Voyager 1. *Geophys. Res. Lett.* **38**, L19103 (2011). <https://doi.org/10.1029/2011GL049261> . 840
841
842
843

[21] Macek, W. M., Wawrzaszek, A. & Carbone, V. Observation of the multifractal spectrum in the heliosphere and the heliosheath by Voyager 1 and 2. *J. Geophys. Res.* **117**, 12101 (2012). <https://doi.org/10.1029/2012JA018129> . 844
845
846
847
848

[22] Macek, W. M., Wawrzaszek, A. & Burlaga, L. F. Multifractal structures detected by Voyager 1 at the heliospheric boundaries. *Astrophys. J. Lett.* **793**, L30 (2014). <https://doi.org/10.1088/2041-8205/793/2/L30> . 849
850
851
852

[23] Macek, W. M. *et al.* Magnetospheric Multiscale observations of turbulence in the magnetosheath on kinetic scales. *Astrophys. J. Lett.* **864** (2), L29 (2018). URL <http://stacks.iop.org/2041-8205/864/i=2/a=L29>. <https://doi.org/10.3847/2041-8213/aad9a8> . 853
854
855
856
857

[24] Macek, W. M., Wójcik, D. & Burch, J. L. Magnetospheric Multiscale observations of Markov turbulence on kinetic scales. *Astrophys. J.* **943** (2), 152 (2023). URL <https://dx.doi.org/10.3847/1538-4357/aca0a0>. <https://doi.org/10.3847/1538-4357/aca0a0> . 858
859
860
861
862

[25] Macek, W. M. & Wójcik, D. Statistical analysis of stochastic magnetic fluctuations in space plasma based on the MMS mission. *Mon. Not. Royal Astronom. Soc.* **526** (4), 5779–5790 (2023). URL <https://doi.org/10.1093/mnras/stad2584>. <https://doi.org/10.1093/mnras/stad2584> . 863
864
865
866
867

[26] Wójcik, D. & Macek, W. M. Testing for Markovian character of transfer of fluctuations in solar wind turbulence on kinetic scales. *Phys. Rev. E* **110**, 025203 (2024). URL <https://link.aps.org/doi/10.1103/PhysRevE.110.025203>. <https://doi.org/10.1103/PhysRevE.110.025203> . 868
869
870
871

[27] Wójcik, D. & Macek, W. M. Searching for universality of turbulence in the earth’s magnetosphere. *Journal of Geophysical Research:* 872
873
874

875 *Space Physics* **130** (10), e2025JA034020 (2025). <https://doi.org/https://doi.org/10.1029/2025JA034020>, <https://arxiv.org/abs/https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2025JA034020> .

876

877

878

879 [28] Burlaga, L. Multifractal structure of the large-scale heliospheric magnetic field strength fluctuations near 85AU. *Nonlinear Processes in Geophysics* **11** (2004). <https://doi.org/10.5194/npg-11-441-2004> .

880

881

882

883 [29] Ott, E. *Chaos in Dynamical Systems* (Cambridge: Cambridge University Press, 1993).

884

885

886 [30] Huchra, J. P. *et al.* The 2MASS Redshift Survey—description and data release. *The Astrophysical Journal Supplement Series* **199** (2), 26 (2012). URL <https://dx.doi.org/10.1088/0067-0049/199/2/26>. <https://doi.org/10.1088/0067-0049/199/2/26> .

887

888

889

890 [31] Macek, W. M. Multifractal Scaling Laws in the Universe Distribution of Galaxies. *18th International Conference on Non Linear Analysis and Modeling: Theory and Applications*, Plenary Lecture (2025). URL <https://cmsim.org/> .

891

892

893

894

895 [32] Macek, W. M. & Wójcik, D. Multifractal Spectrum Observed in the Distribution of Galaxies. *AGU Annual Meeting NG13A*, 1520274 (2024). URL <https://www.researchgate.net/publication/385702650>. <https://doi.org/10.21203/rs.3.rs-5084702/v1> .

896

897

898

899

900 [33] Martinez, V. J., Jones, B. J. T., Dominguez-Tenreiro, R. & van de Weygaert, R. Clustering Paradigms and Multifractal Measures. *Astrophys. J. Lett.* **357**, 50 (1990). <https://doi.org/10.1086/168890> .

901

902

903

904 [34] Shectman, S. A. *et al.* The Las Campanas Redshift Survey. *Astrophys. J. Lett.* **470**, 172 (1996). <https://doi.org/10.1086/177858>, <https://arxiv.org/abs/astro-ph/9604167> [astro-ph].

905

906

907

908 [35] Skrutskie, M. F. *et al.* The Two Micron All Sky Survey (2MASS). *Astrophys. J.* **131** (2), 1163–1183 (2006). <https://doi.org/10.1086/498708> .

909

910

911

912 [36] Jones, D. H. *et al.* The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures. *Mon. Not. Royal Astronom. Soc.* **399** (2), 683–698 (2009). <https://doi.org/10.1111/j.1365-2966.2009.15338.x>, <https://arxiv.org/abs/0903.5451> [astro-ph.CO].

913

914

915

916 [37] Davis, T. M. & Lineweaver, C. H. Expanding confusion: Common misconceptions of cosmological horizons and the superluminal expansion of the universe. *Publications of the Astronomical Society of Australia* **21** (1), 97—109 (2004). <https://doi.org/10.1071/AS03040> .

917

918

919

920

[38] Antonyuk, P. Relativistic generalization of the Hubble law. *Journal of Physics: Conference Series* **1557**, 012039 (2020). <https://doi.org/10.1088/1742-6596/1557/1/012039> . 921
 922
 923
 924

[39] Adame, A. G. & other authors (the DESI collaboration). Desi 2024 iii: baryon acoustic oscillations from galaxies and quasars. *arXiv preprint arXiv:2404.03000* (2024). <https://doi.org/10.48550/arXiv.2404.03000>, <https://arxiv.org/abs/2404.03000> [astro-ph.CO]. 925
 926
 927
 928

[40] York, D. G. *et al.* The Sloan Digital Sky Survey: Technical summary. *The Astronomical Journal* **120** (3), 1579 (2000). URL <https://dx.doi.org/10.1086/301513>. <https://doi.org/10.1086/301513> . 929
 930
 931
 932

[41] Dressler, A. A catalog of morphological types in 55 rich clusters of galaxies. *Astrophys. J. Supp. ser.* **42**, 565–609 (1980). <https://doi.org/10.1086/190663> . 933
 934
 935
 936

[42] Buuren, S. *Flexible Imputation of Missing Data, Second Edition* (2018). 937
 938

[43] Falconer, K. *Fractal Geometry: Mathematical Foundations and Applications* (J. Wiley: New York, 1990). 939
 940
 941

[44] Macek, W. M. Multifractality and intermittency in the solar wind. *Nonlinear Processes in Geophysics* **14** (6), 695–700 (2007). URL <http://www.nonlin-processes-geophys.net/14/695/2007/> . 942
 943
 944
 945

[45] Frisch, U. *Turbulence. The legacy of A.N. Kolmogorov* (Cambridge UK: Cambridge University Press, 1995). 946
 947

[46] Biskamp, D. *Magnetohydrodynamic Turbulence* (Cambridge, UK: Cambridge University Press, 2003). URL <https://doi.org/10.1017/CBO9780511535222>. 948
 949
 950
 951

[47] Chhabra, A. & Jensen, R. V. Direct determination of the $f(\alpha)$ singularity spectrum. *Phys. Rev. Lett.* **62** (12), 1327–1330 (1989). <https://doi.org/10.1103/PhysRevLett.62.1327> . 952
 953
 954
 955

[48] Chhabra, A. B., Meneveau, C., Jensen, R. V. & Sreenivasan, K. R. Direct determination of the $f(\alpha)$ singularity spectrum and its application to fully developed turbulence. *Phys. Rev. A* **40** (9), 5284–5294 (1989). <https://doi.org/10.1103/PhysRevA.40.5284> . 956
 957
 958
 959
 960

[49] Macek, W. M. & Strumik, M. Hyperchaotic intermittent convection in a magnetized viscous fluid. *Phys. Rev. Lett.* **112** (5) (2014). <https://doi.org/10.1103/PhysRevLett.112.074502> . 961
 962
 963
 964
 965
 966

22 *Galaxy Distribution*

967 [50] Meneveau, C. & Sreenivasan, K. R. Simple multifractal cascade model
968 for fully developed turbulence. *Phys. Rev. Lett.* **59**, 1424–1427 (1987).
969 <https://doi.org/10.1103/PhysRevLett.59.1424> .

970

971 [51] Burlaga, L. F. *Interplanetary Magnetohydrodynamics* (New York: Oxford
972 University Press, 1995).

973

974 [52] Huber, P. J. Robust Estimation of a Location Parameter. *Annals Math-
975 ematical Statistics* **35** (1), 73–101 (1964). URL <https://doi.org/10.1214/aoms/1177703732>. <https://doi.org/10.1214/aoms/1177703732> .

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

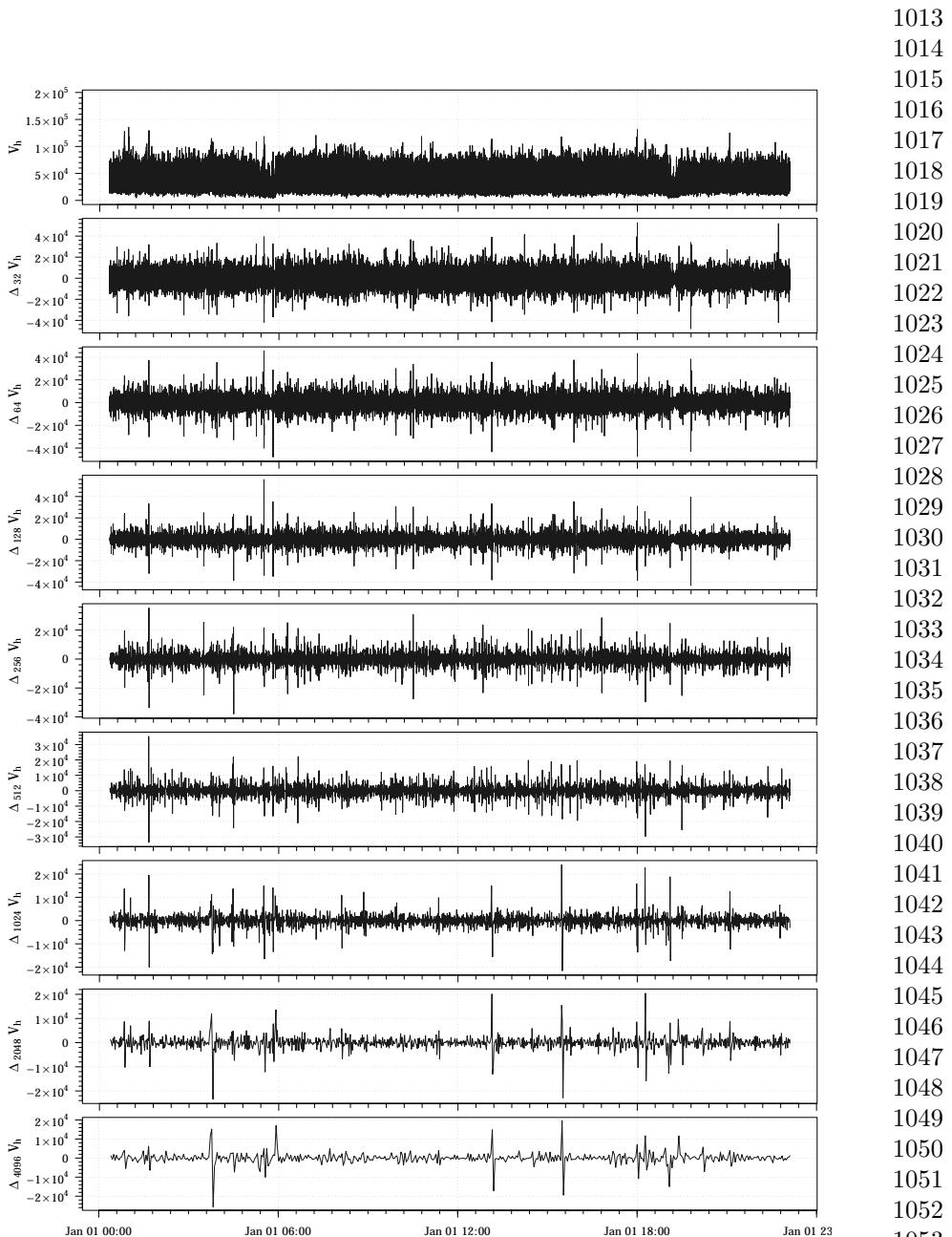
1003

1004

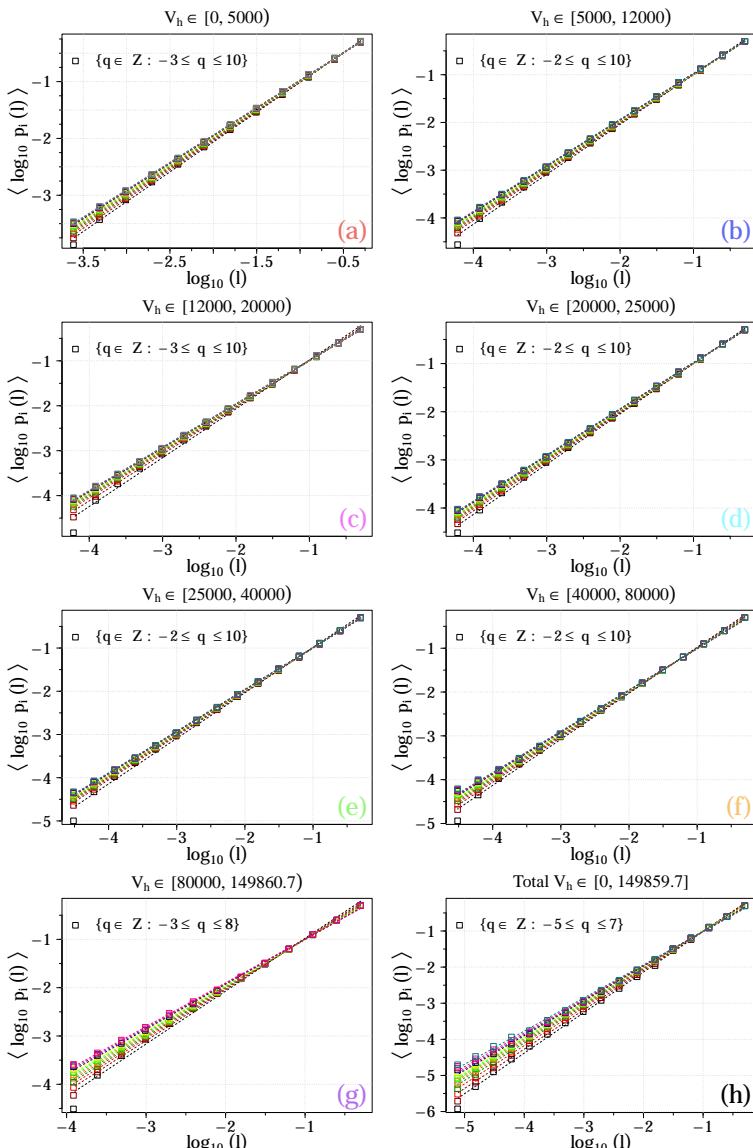
1005

1006

1007


1008

1009


1010

1011

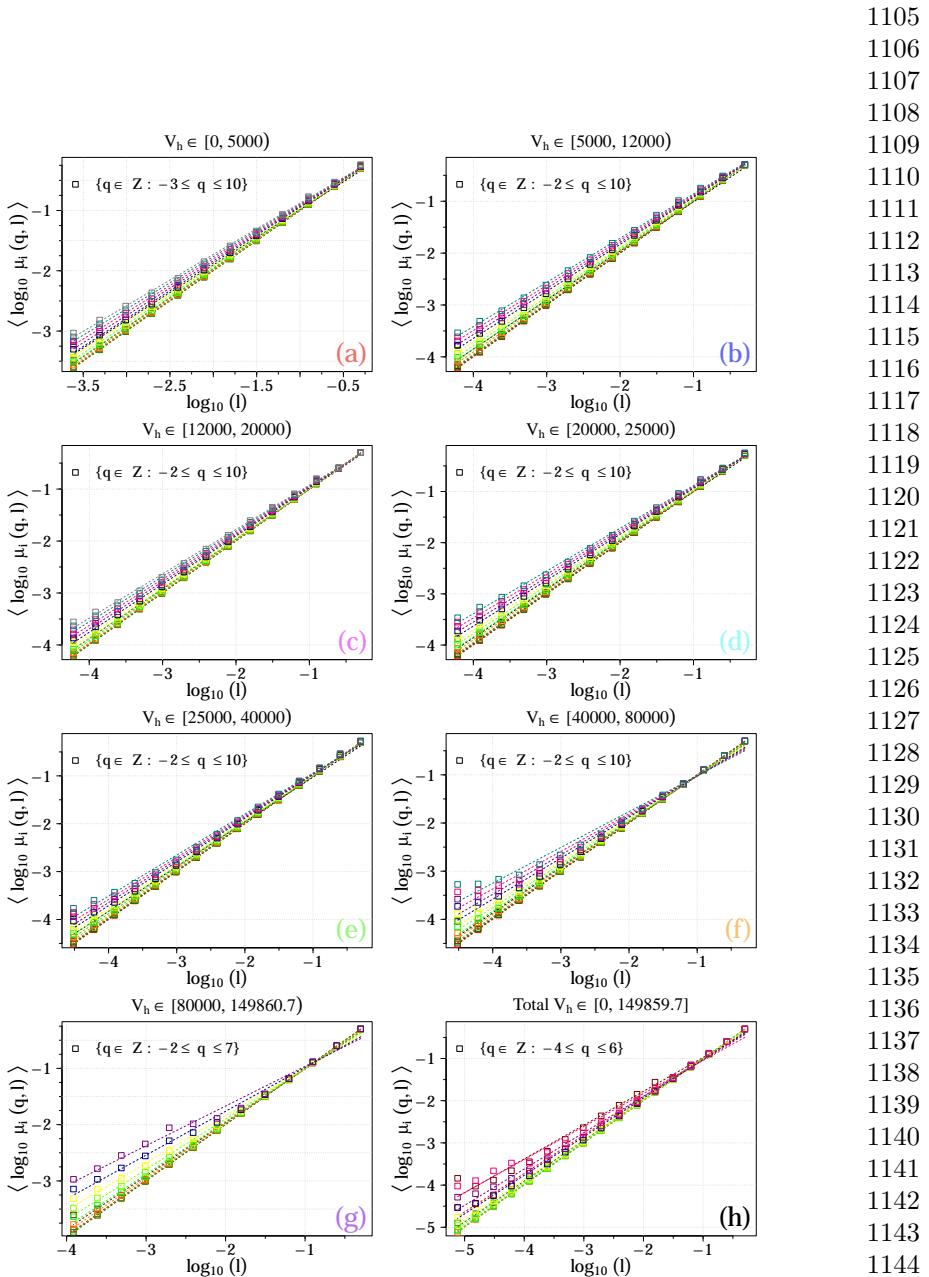

1012

Fig. 3 The differences of successive 2^m -step averages, $\Delta_{2^m} V_H$ [km s⁻¹], represent large-scale speed fluctuations for $m = 5, \dots, 12$ calculated from the observed distribution of galaxies based on the selected UZCAT data.

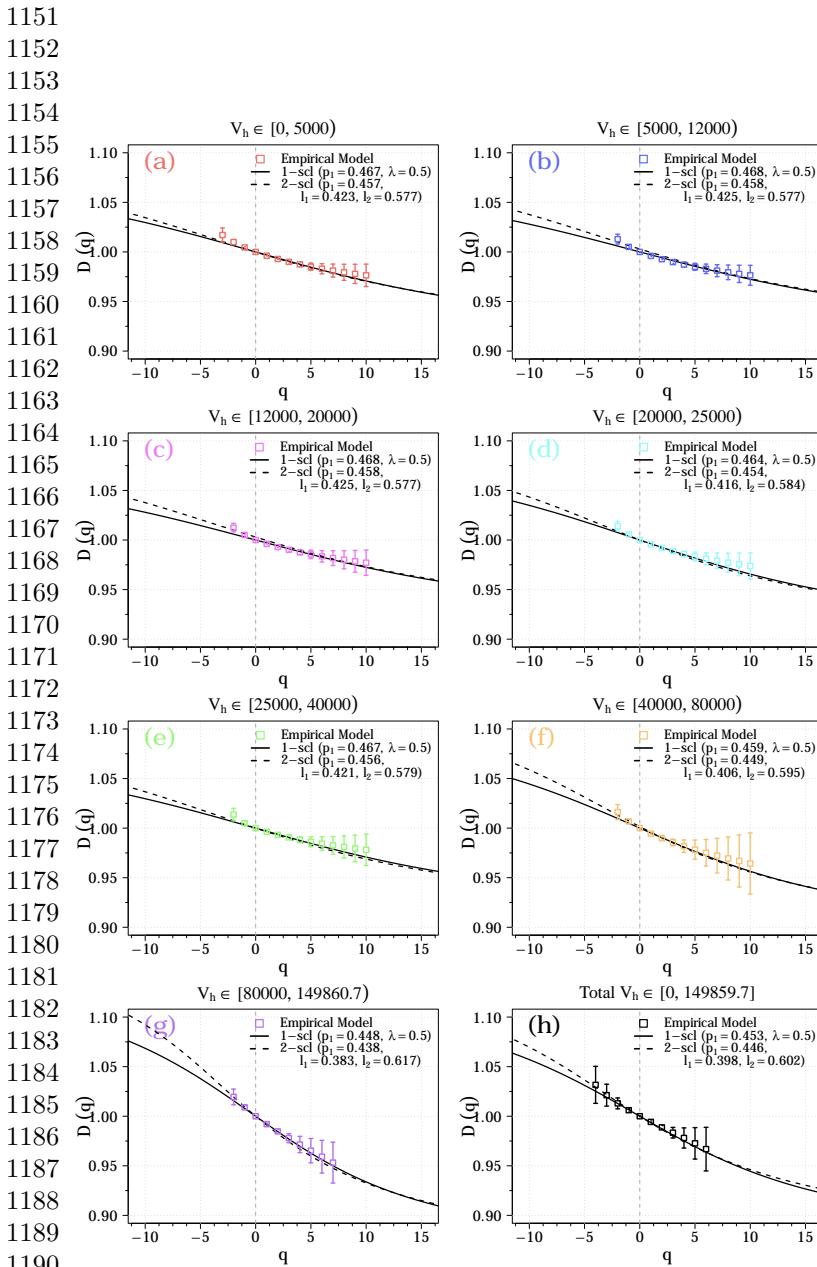


Fig. 4 Generalised average logarithmic probability, $\langle \log_{10} p_i(l) \rangle$, (a) as a function of $\log_{10} l$ for $-4 \leq q \leq 6$. These results are obtained using the *UZCAT* catalog.

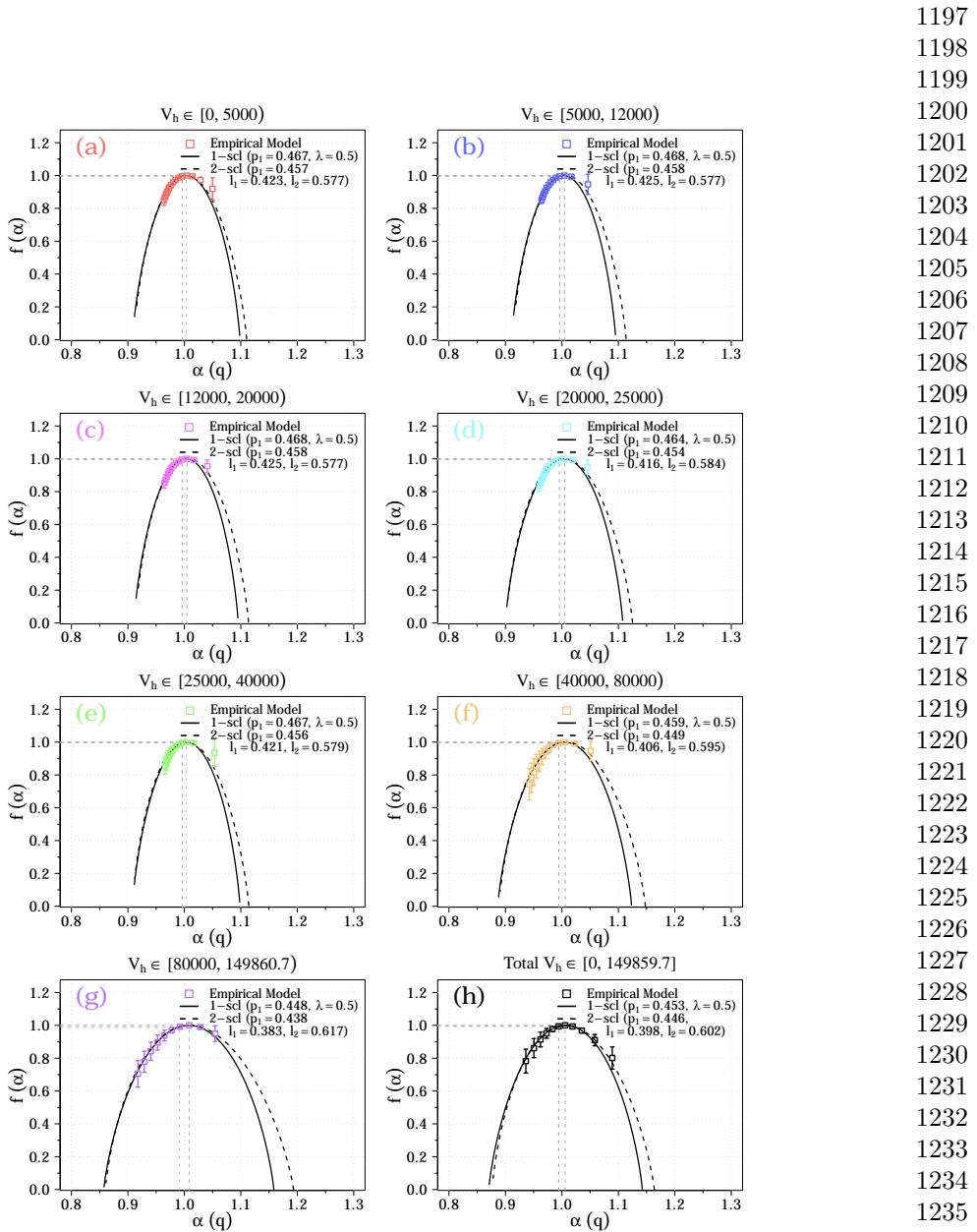


Fig. 5 Generalised average logarithmic pseudoprobability, $\langle \log_{10} \mu_i(q, l) \rangle$, as a function of $\log_{10} l$ for $-4 \leq q \leq 6$. These results are obtained using the UZCAT catalog.

1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150

Fig. 6 The obtained generalised dimensions D_q as functions of q for the observation categories in the *UZCAT* catalog are compared with the weighted Cantor models: one-scale (continuous lines) and two-scale (dashed lines).

Fig. 7 The obtained multifractal measures of the multifractal spectrum $f(\alpha)$ as function of the singularity strength α (boxes) for the observation categories in the UZCAT catalog are compared with the weighted Cantor models: one-scale (continuous lines) and two-scale (dashed lines).

1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242